

TERMS AND CONDITIONS OF SALE AND LICENSE OF TANDY COMPUTER EQUIPMENT AND
SOFTWARE PURCHASED FROM RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL

STORES AND RADIO SHACK FRANCHISEES OR DEALERS AT THEIR AUTHORIZED LOCATIONS

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes lull that this computer hardware purchased (the "Equipment"), and any
copies of software included · ent or licensed separately (the "Software") meets the specifications,
capacity, capabilities, requirements of CUSTOMER.

8. CUSTOMER assumes lull responsibility for the condition and effectiveness of the operating environment in which
the Equipment and Software are to function, and for its installation.

II. UMITEO WARRAN'flES AND CONDITIONS OF SALE
A. For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon

purchase of the Equipment. RADIO SHACK warrants to• the original CUSTOMER that the Equipment and the
medium upon which the Software is stored is free from manufacturing .defects. This warranty la only applicable
ID punmam of Tandy Equlpmm by Iba original customer from Radio Shack company-owned computer
canters, retail stores, and Radio Shack lranchlsees and dealers al their authorized locations. The warranty is
void if the Equipment or Software has been subjected to improper or abnormal use. If a manufacturing defect is
discovered during the stated warranty period, the defective Equipment must be returned to a Radio Shack
Computer Center, a Radio Shack retail'store, a participating Radio Shack franchisee or a participating Radio Shack
dealer for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and
exclusive remedy in the event of a defect is limited to the correction of the defect by repair, replacement, or
refund of the purchase price, at RADIO SHACK'S election and sole expense. RADIO SHACK has no obligation to
replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software,
except as provided in this paragraph. Software is licensed on an "AS fS" basis, without warranty. The ortginal
CUSTOMER'S exclusive remedy, in the event of a Software manufacturing .defect, is its repair or replacement
within thirty (30) calendar days of the date of the Radio Shack sales document received upon license of the
Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store.
a participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any
warranties of any nature on behalf of RADIO SHACK.

D. EXCEPT AS PROVIDED HEREIN, RADIO SHACK MAKES NO EXPRESS WARRANTIES, ANO ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED IN ITS DURATION
TO THE DURATION OF THE WRITTEN LIMITED WARRANTIES SET FORTH HEREIN.

E. Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not
apply to CUSTOMER.

Ill. LIMITATION OF LIABILITY
A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER

OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR "SOFTWARE" SOLD, LEASED
LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF
SERVICE, LOSS DF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM
THE USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE." IN NO EVENT SHALL RADIO SHACK BE
LIABLE FOR LOSS OF PROFITS, OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING DUT OF
ANY BREACH OF THIS WARRANTY OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE,
LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT' OR "SOFTWARE."
NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR
DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR
THE PARTICULAR "EQUIPMENT" OR "SOFTWARE" INVOLVED.

B. RADIO SHACK shall not be liable tor any damages caused by delay in delivering or furnishing Equipment and/or
Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought
more than two (2) years after the cause of action has accrued or more than four (4) years after the date of the
Radio Shack sales document tor the Equipment or Software, whichever first occurs.

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above
limitation(s) or exclusion(s) may not apply to CUSTOMER.

IV. SOFTWARE LICENSE
RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the TANDY Software on one computer,
subject to the followin9 provisions: .
A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.
B. Title to the medium on which the Software is recorded (cassette and/or diskette) or stored (ROM) is transferred to

CUSTOMER, but not title to the Software.
C. CUSTOMER may use Software on a multiuser or network system only ii either, the Software is expressly labeled

to be for use on a multiuser or network system, or one copy of this software is purchased for each node or
terminal on which Software is to be used simultaneousiy.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except tor use on one computer
and as is specifically provided in this Software License. Customer is expressly prohibited from disassembling the
Software.

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if
additional copies are required in the operation of one computer with the Software, but only to the extent the
Software allows a backup copy to be made. However, for TRSDOS Software, CUSTOMER is permitted to make a
limited number of additional copies for CUSTOMER'S own use.

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one
copy of the Software for each one sold or distributed. The provisions of this Software ,License shall also be
applicable to third parties receiving copies of the Software from CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.
V. · APPLICABILITY OF WARRANTY

A. The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a
sale of the Equipment and/or Software License to CUSTOMER or to a transaction whereby Radio Shack sells or
conveys such Equipment ID a third party for lease to CUSTOMER.

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author,
owner and or licensor of the Software and any manufacturer of the Equipment sold by Radio Shack.

VI. STATE LAW RIGHTS
The Wll(fanties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may
have other rights which vary from state to state. 6/86

TANDY®600
HANDHELD

BASIC
REFERENCE

MANUAL

Tandy 600 Handheld™-BASIC Software: Copyright 1984, 1985
Microsoft Corporation. Licensed to Tandy Corporation. All Rights
Reserved.

Tandy® 600 BIOS Software: Copyright 1984 Tandy Corporation.
All Rights Reserved.

BASIC Reference Manual: Copyright 1985 Tandy Corporation.
All Rights Reserved.

Handheld BASIC is a trademark of Microsoft Corporation.

Tandy is a registered trademark of Tandy Corporation.

Reproduction or use, of any portion of this manual, without ex­
press written permission from Tandy Corporation, is prohibited.
While reasonable efforts have been made in the preparation of
this manual to assure its accuracy, Tandy Corporation assumes
no liability resulting from any errors in or omissions from this
manual, or from the use of the information contained herein.

10 9 8 7 6 5 4 3 2

Contents

Introduction to BASIC
About this Manual
Notations .. .
Terms

Chapter 1 / About Handheld BASIC
Naming Files
Device Names

Chapter 2 / Inserting and Using the
BASIC ROM

Chai~:;~z:~~~~. ~~~- ~~~~!. ~~~?

3

3
3
4

5

5
5

7

9
Entering BASIC . 9
Typing the Program . 9
Saving the Program . 10
Loading the Program into Memory 10
Exiting BASIC . 11

Chapter 4 / General Information. 13
Editing . 13
Special Function Keys . 16

Chapter 5 / Basic Concepts . 17
Elements of a Program. 17
Data ... 18
Constants . 20
Variables . 21
Declaring Numeric Constants and Variables 21

Numeric Constants . 21
Numeric Variables . 22

Numeric Precision Conversion . 23
Manipulating Data . 23

Arithmetic Operators . 24
String Operator . 25
Relational Operators . 25
Logical Operators . 27
Hierarchy of Operators . 28
Functions . 29

1

Chapter 6 / Arrays . 3

Types of Arrays . 3
Defining Arrays . 3

Chapter 7 / Files . 3

Sequential Access Files . 3
Creating a Sequential Access File 3
Updating a Sequential Access File 3

Direct Access Files . 41

Creating a Direct Access File 4
Accessing a Direct Access File 4:

Chapter 8 / Using Machine Language
Subroutines 4

Using DBCALLS.LIB . 4:
Database-oriented Calls . 4t
Record-oriented Calls . 4'
Field-oriented Calls . 4:
Data Querying . 5:
Sorting . 5•
Sample Program . 5l

Chapter 9 / Introduction to BASIC
Keywords . 5!

Format for Chapter 10 . 5!
Terms Used in Chapter 10 . 6(
Statements . 6:
Functions . &

Chapter 10 / BASIC Keywords 6~

Chapter 11 / Technical Information
About LIBRARY FILES 2m

Chapter 12 / BASIC Error Codes and
Messages 21'i

Appendix A
ASCII Character Codes . 22'i

Index .. 233

2

INTRODUCTION TO BASIC

About This Manual
This manual describes Handheld BASIC for the Tandy 600. It is
a reference manual, not a tutorial. We assume you already know
BASIC and are using this manual to locate information quickly.
If you do not know BASIC, see your Radio Shack dealer for the
following book:

Learning BASIC for the Tandy 200011000
by David Lien, Cat. No. 25-1500

Your local bookstore has many books about BASIC available that
are written in tutorial fashion.

Notations
The following notations are used throughout this manual:

CAPITALS

italics

. . . (ellipsis)

[]

&Hnnnn

&Onnnnn

I keyname I

Material that you must enter exactly as it
appears.

Words, letters, characters, or values within
command lines you must supply from a set of
acceptable entries. Elsewhere, italics are used
for emphasis.

Items preceding the ellipsis may be repeated .

Items enclosed in brackets are optional.

nnnn is a hexadecimal number.

nnnnn is an octal number.

A key on your keyboard.

A blank character (ASCII code 32). For exam­
ple, in

BASICl'>l'>PROG
two spaces are between BASIC and PROG.

3

Introductwn to BASIC

Terms
The following terms are used in this manual:

buffer An area in memory that BASIC uses to crea·
and access a disk file. A buffer is representE
by a number in the range 1 to 15. Once ye
use a buffer to create a file, you cannot use
to create or access any other files; you mu
first close the file. You may only access a
open file with the buffer used to open it.

parameters

arguments

syntax

4

Information you supply to specify how a coll
mand is to operate.

Expressions you supply for a function 1
evaluate.

A command with its parameter(s), or a fun
tion with its argument(s). This shows the fo
mat to use for entering a keyword in
program line.

Chapter 1

ABOUT HANDHELD BASIC

Handheld BASIC is an interpreter. This means that, when you
run a program, BASIC looks at one statement at a time and exe­
cutes it before going to the next statement.

BASIC also lets you take advantage of many features, such as:

• Easier machine language subroutine access.
• Use of application program files from within BASIC programs.
• More accurate math operations with Binary Coded Decimal

calculation system.

Naming Files
When you create a work file for an application, the first thing
you do is enter a filename for the new file. Valid filenames use
the following format: filename.ext

filename a name you choose to identify the file

extenswn

Type 8 or fewer letters and/or numbers, including
special symbols: $ & # % ' () @ • { } ! No spaces
are allowed.

needed only when an extension follows

a three character extension to identify the
application

Type 3 or fewer letters and/or numbers, including
special symbols: $ & # % ' () @ • { } ! No spaces
are allowed.

When you are creating a file within an application, the program
automatically adds the appropriate extension. Refer to "Work
File Extensions" for the proper extensions for each application's
data files.

Device Names
BASIC uses device identifiers (dev:) to indicate a physical device
to be used for communication. These names are:

5

Chapter 1

KYBD:
SCRN:
LPTl:

keyboard. Use for input only.
screen. Use for output only.
printer. Use for output only.

You can open any of these devices just as you would a disk file.

6

Chapter 2

INSERTING AND USING THE

BASIC ROM

On the bottom of the Tandy 600 is a covered compartment which
contains the ROM chips that control your computer. The Tandy
600 comes with 5 ROM chips. The first 4 (from left to right) con­
tain the operating system and all applications and functions
except Multiplan.

The fifth chip, on the far right, contains the Multiplan applica­
tion. The Multiplan chip is encased in a Molex carrier, which
facilitates easy removal and insertion of the chip.

To insert the Handheld BASIC ROM chip in your Tandy 600, you
must exchange the BASIC ROM chip for the Multiplan chip.

WARNING: Static and other magnetic fields can wipe
out your ROM chips. Never touch the pins of the
Tandy 600 ROM chips. Note that the last ROM slot
must always contain a ROM chip, whether it is the
Multiplan chip, the BASIC chip, or any chip made
available in the future. Never remove any of the first
four ROM chips.

To exchange the BASIC ROM chip for the Multiplan chip, first
save all your data files onto disk, then turn off the computer and
close the viewing screen. Turn over the computer so that the
removable panel is at the lower left corner a~ you face the com­
puter. Pull up the panel from the notched lower side.

The Multiplan ROM is the chip on the far right of the enclosure.
To remove the Multiplan ROM, use the top and bottom exten­
sions on the Molex carrier to gently lift the chip and carrier from
its socket. Now, insert the BASIC chip and carrier into the
socket. The Molex carrier/chip assembly must be inserted with
the 2 holes in the carrier at the top of the socket. (See the illus­
tration on the following page.)

7

Chapter 2

BASIC ROM chip

FIGURE A

When you turn on the computer and the Tandy 600 Screen menu
reappears, BASIC is now listed as the last option in the com­
mand menu. To enter BASIC, move the cursor over the BASIC
listing, and press I ENTER I twice. When the OK prompt appears,
you are ready to begin programming in BASIC.

8

Note: If your Tandy 600 has 128K of memory or more, you
may save BASIC onto a diskette using the COPY command
at the system manager level. This lets you load and use
BASIC while keeping the Multiplan ROM in place and
eliminates the need for swapping application ROM chips.

Chapter 3

TYPING AND SAVING
BASIC PROGRAMS

The easiest way to learn how BASIC operates is to write and run
a program. This chapter provides sample statements and instruc­
tions to help familiarize you with the way BASIC works.

The main steps in running a program are:

1. Entering BASIC
2. Typing the program
3. Running the program
4. Saving the program
5. Loading the program into memory
6. Exiting BASIC

Entering BASIC
Position the cursor over the BASIC file in the Command Menu,
and press I ENTER I twice. When the cursor flashes below the OK
prompt, you are ready to begin programming in BASIC.

Typing the Program
Type in the sample program below. After typing each line, check
it for any mistakes. If there are no mistakes, press I ENTER 1. If you
make a mistake, use the I DEUBKSP I key to move the cursor to the
mistake and retype the rest of the line to correct the mistake.

Check your program again. If you find a mistake, enter the line
number and type the line again. The newly typed line replaces
the old line.

It does not matter if you enter Line 15 after Line 20; BASIC still
reads and executes Line 15 before "looking" at Line 20. BASIC
always reads program lines in numerical order.

Tell BASIC to execute this program by typing:

RUN I ENTER I
Your screen should display:

MASTERING BASIC IS A SIMPLE PROCESS

9

Chapter3

BASIC has powerful special keys that let you correct mistakes
without retyping the entire line. These commands are discussed
in Chapter 4, "General Information."

Saving the Program
You can save any BASIC program in RAM or on disk by assign­
ing it a fUename. The filename must be enclosed in quotation
marks.

Fbr example, to save the program we just wrote on the Disk
Drive, with the filename test.bas, use the following command:

SAVE "A:test.bas" IENTERI

You can also save the file in RAM with this command:

SAVE "test.bas"

which saves the program as test.bas in RAM and displays the
filename on the menu when you exit BASIC.

After the program is saved in RAM or on the disk, BASIC dis­
plays its Ok prompt.

Note: If you do not assign a filename to your program when
you exit BASIC, the computer automatically saves the pro­
gram under the filename WORK.BM!. When you re-enter
BASIC and do not specify a filename at the "file to load"
prompt, the computer loads the contents of WORK.BM! into
memory.

Loading the Program Into Memory
If, after writing or running other programs, you want to use a
program saved on disk again, you must load it back into memory
from disk.

Fbr example, to load the program test.bas from disk, type:

LOAD "A: test. bas"

Another way to load and run a program saved in RAM is to
type:

RUN "filename"

RUN automatically loads and runs the program in RAM speci­
fied by filename.

10

Type and Saving BASIC Programs

The SAVE, LOAD, and RUN commands are discussed in more
detail in Chapter 10.

Note: Whenever you run a BASIC program, the computer
automatically creates a duplicate .BMI (BASIC Mirror
Image) file. These .BMI files are listed to the right of the
BASIC listing in the main menu. If you wish to suppress
the creation of .BMI files, you should end your programs
with either a QUIT command or SYSTEM command. These
commands exit BASIC and return you to the main menu.

Exiting BASIC
There are 3 ways to exit BASIC. Press I CTRL I (filJ or type QUIT
to return to the main menu. Press I CTRL I (ID to exit BASIC and
return to the previously run application program.

Note: You may also exit BASIC with the SYSTEM com­
mand. This command suppresses the creation of .BMI files,
however, and if you forget to save your program to disk or
RAM, the computer deletes it.

11

Chapter 4

GENERAL INFORMATION

When BASIC displays the Ok prompt, you can type in program
lines or commands. If you want BASIC to read what you type in,
you must press I ENTER I at the end of the line.

A single line can be a maximum of 255 visible characters. Visi­
ble characters are those that take up a space on the display.

Since 255 characters cannot fit on one line of the display, BASIC
moves the extra characters to the next line. This is called wrap­
around.

BASIC looks at the first character of a line. If it is a digit,
BASIC stores the line in memory as a program line. For exam­
ple, if you type:

10 PRINT "THE TIME IS " TIME$!ENTER!

BASIC takes this as a program line and stores it in memory. It
does not execute the line until you type RUN and press I ENTER I.

If the first character is not a digit, BASIC tries to execute the
line as a command. For example, if you type:

MILES•133:GALLON=11 :MPG=MILES/GALLON I ENTER I

BASIC immediately executes this line as a command. After it is
executed, the statement no longer exists in memory, but the val­
ues of the variables MILES, GALLON, and MPG are stored in
memory.

This BASIC capability lets you use the computer as a calculator
for quick computations that do not require an entire program.

Editing
BASIC lets you correct errors in program and command lines
quickly and efficiently without retyping entire lines.

For extensive editing of BASIC programs, you may save the pro­
gram in ASCII format and then use the WORD utility. A BASIC
program may be saved in ASCII by specifying the [A] option in
the SAVE statement. For example:

SAVE "TEST",A

makes a copy of TEST in memory in ASCII format which may
then be edited by WORD.

13

Chapter4

If you only need to edit a few lines, you may use the BASIC EDI­
TOR. This editor is invoked by typing:

EDIT LIN£ NUMBER

in direct mode or when a BASIC program encounters the EDIT
statement during execution.

After you invoke the EDIT command, the BASIC statement is
printed and an edit cursor is positioned after the BASIC line
number. The edit cursor is represented by a reverse video char­
acter. The editor cursor does not blink.

As you type characters, the new characters overwrite existing
characters or are inserted depending on the mode you select.

In EDIT Mode, certain characters have special significance.
These are as follows:

EDIT Control Characters

Name KEY

Cursor Left G

Cursor G
Right

Cursor CD
Down

Cursor Up OJ

Delete []filIT)
I DEUBKSP I

14

Action

Move the cursor to the preceding logi­
cal character on the line. If the cursor
is at initial cursor position, the error
tone is sounded.

Move the cursor to the next logical
character on the line. If the cursor is
at the end of the line, the error tone is
sounded.

If the line wraps to the next line (or
lines), the cursor down key moves the
cursor to the next line. The cursor
cannot be moved to a location where
there is no character.

Moves the cursor up to the next physi­
cal line of the logical BASIC line. (See
Cursor Down).

The character beneath the cursor is
deleted. If the line is empty, the error
tone is sounded. If the cursor is on a
carriage return character, the carriage
return is deleted and this line and the
following line are joined.

General Information

Backspace I DEUBKSP I The character to the left of the cursor
is deleted. The new line is then dis-
played. If the cursor is at the initial
position, the character beneath the
cursor is deleted.

Tab I TAB I The appropriate number of spaces are
inserted to move character under 9ie
cursor to the next TAB position on the
current line. An error tone is sounded
if the farthest TAB position has
already been reached.

Carriage I CTRL I J The physical line is broken at the cur-
Return rent cursor position, but the logical

line is preserved. Subsequent charac-
ters are moved to column 0 of the fol-
lowing line. The line scrolls if
necessary. If the scroll forces any part
of the line off of the screen, ,~rror
tone is sounded and the scroll doesn't
occur.

I ENTER I I ENTER I The program line is returned to the
program, and the editing session ends.

Break I CTRL IC This ends the editing session. The pro-
gram line is unchanged.

Insert/ I CTRL IR Control R toggles between insert and
Overwrite overwrite modes. Pressing any of the
Mode cursor keys ends insert mode.

Escape I ESC I Deletes the current line from the
screen and ends the editing session.
The line remains unchanged in
memory.

15

Chapter4

Any character
or number

Text Characters

The character is inserted/overwritten
at the cursor position and the new line
is displayed. If the new line causes any
part of the logical line to scroll off of
the screen, the error tone is sounded.
If the cursor is at the end of the line,
the character is appended to the exist­
ing line. Line wrap occurs as neces­
sary based on the current screen
width.

Special Function Keys

Handheld BASIC assigns the following commonly used com­
mands to the 10 function keys at the top of the Tandy 600
keyboard:

Fl LIST
F2 RUN ..
F3 LOAD"
F4 SAVE"
F5 CONT ..

F6 EDIT
F7 TRON ..
F8 TROFF ..
F9 FILES"
FlO KEY

You must press I ENTER I after pressing [ill, (ill, [ill, @, m], and
[fil]. The (fl], [ill, [ill, and [ill function keys contain a built-in
I ENTER I command.

16

Chapter 5

BASIC CONCEPTS

This chapter describes the different ways BASIC handles and
manipulates data. By understanding how BASIC does this, you
can build more efficient programs.

Elements of a Program
A program is a group of instructions that performs a certain
task. It is made up of 1 or more numbered lines.

Each line can contain a maximum of 255 visible characters. Of
the 255 characters, BASIC automatically reserves 1 space for
each digit in the line number and another space for the space fol­
lowing the line number. If you enter more than 255 visible char­
acters, BASIC truncates the line.

Here is a sample program line:

11:l PRINT "one"

A line number is always the first element of a program line. In
BASIC line numbers must be in the range 0 to 65529. In the
sample program line, the line number is l(!J.

A BASIC statement follows the line number. A statement tells
BASIC to perform a specific operation. In the sample program
line, the statement is PRINT "one". This statement tells BASIC
to print, or display, the word one on the screen.

You can have more than 1 statement on a program line by plac­
ing a colon between each statement. For example:

21:l FDR X • 1 TD 5:PRINT "one":NEXT X

This program line has 3 statements. They are:

1. FOR X = 1 TO 5
2. PRINT "one"
3. NEXT X

You can add explanations, or remarks, to your program lines. A
remark is preceded by a single quotation mark to separate it
from the statements. Here is a program line with a remark:

21:l FOR X • 1 TO 5:PRINT "one":NEXT X 'loop

17

Chapter5

Data
Data is information on which BASIC performs its operations.
Data can be numbers, characters, or symbols. BASIC classifiee
data into two groups: string and numeric.

String data is a sequence of ASCII characters, graphics or non•
ASCII symbols. A string can be a maximum of 255 characters.
If the string is entered on a program or command line, it must
be enclosed in quotation marks (see "Constants" later in thie
section). If the string is entered in response to a prompt, it is not
enclosed in quotation marks. BASIC does not evaluate string
data; it simply stores it for the program to use or manipulate.

Hint: ASCII stands for American Standard Code for
Information Interchange. In ASCII, each character has
a unique number that represents it. This is necessary
since computers understand and process only numbers.

Here are some sample strings:

"GARY" "SHERRY ST" "255 CENTRAL AVE"
"25 dollars" "$250" "16342"

Notice that numbers can be in a string. Remember, BASIC does
not evaluate strings. Type the following line at BASIC's prompt:

PRINT "2 + 4"

BASIC does not add 2 and 4. It obeys the command PRINT and
displays 2 + 4 on your screen.

Strings use 3 bytes of memory plus the number of characters in
the string. Fbr example, the string "CATS" takes up 7 bytes of
memory: 4 for the string plus 3.

Numeric data consists of positive and negative numbers. BASIC
divides numeric data into 5 groups: integer, single precision,
double precision, hexadecimal, and octal.

Integers are whole numbers in the range -32768 to +32767 that
do not contain a decimal point. For example:

1 3200 -2 500 -12345

Integers use the least amount of memory (2 bytes). Because they
use less memory, BASIC can access them fastest.

18

BASIC Concepts

Singl.e precision numbers can be a maximum of 6 digits and may
have a decimal point. Single precision numbers must be in the
range 10-35 to 10+38• Sample single precision numbers are:

10.001 -200034 123.4567

[f a single precision number is more than 6 digits, BASIC dis­
plays the number in scientific notation, or exponential format, in
the E form. Fbr example:

l.74E 6.98E8 104E-7

BASIC stores a single precision number in 4 bytes of memory.

Doubl.e precision numbers can include a maximum of 14 digits
and may have a decimal point. Double precision numbers have
the same range as single precision numbers. Sample double pre­
~ision numbers are:

1010234567 -8. 7777651010

[fa double precision number is more than 14 digits, BASIC dis­
plays the number in scientific notation, or exponential format, in
the D form. Fbr example:

8.00100708D12 -6. 7765499824D16

BASIC stores double precision numbers in 8 bytes of memory.
l\lthough double precision numbers consume more memory, they
are the most exact.

Note: The Model 600 uses double precision as the default
for numeric operations.

ffexadecimal numbers are the hexadecimal representation of dec­
lmal numbers. They contain 1 to 4 digits and are preceded by
lH. The hexadecimal numbers are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,
B, C, D, E, and F. Here are some hexadecimal numbers and
:heir decimal equivalents:

Hex Decimal

&H76
&H02FF
&HFF

118
767
255

BASIC stores hexadecimal numbers as integers.

'Jctal numbers are the octal representation of decimal numbers.
rhey contain 1 to 6 digits and are preceded by &O or &.
f\lthough only the & is required, we recommend that you use

19

Chapter 5

&O for clarity in your programs. The octal numbers are 0, 1, 2
3, 4, 5, 6, and 7. Here are some octal numbers and their decima
equivalents:

Octal

&7
&0123
&0000456

Decimal

7
83
302

BASIC stores octal numbers as integers.

Constants

Constants are values input to a program that are not subject tc
change. Constants can be either string or numeric data (integer,
single or double precision, hexadecimal, or octal).

Numeric data that will not change can be represented as either
a string or numeric constant. If you use punctuation in the num­
ber, it must be a string constant. For example:

PR I NT "$250,000"

When BASIC encounters a data constant in a statement, BASIC
must determine how to store it:

If the value is enclosed in quotation marks, BASIC stores it
as a string.

If the value is not enclosed in quotation marks, BASIC
stores it as an integer or a single precision or a double pre­
cision number, according to the requirements described in
the previous section. The section, "Declaring Numeric Con­
stants and Variables," describes ways to override BASIC's
classification of constants.

BASIC evaluates numeric constants in program lines as soon as
you enter the line. It does not wait until you run the program. If
any numbers are out of range for their type, BASIC returns an
error message immediately.

Here are some examples of constants:

PRINT 11 NAME 11 , 11 ADDRESS 11 , 11 CITY 11 , 11 STATE 11

This line contains 4 string constants: NAME, ADDRESS, CITY,
and STATE. These values will not change. Every time BASIC
executes this statement, the same 4 words are printed.

PRINT "10"" PLUS"; 2""0; "EQUALS";3""0

20

BASIC Concepts

The 1000 is a string constant, the 2000 and the 3000 are
numeric constants.

Variables
Variables are symbolic names for a value in a BASIC program. A
variable name can be a maximum of 40 characters and must
begin with a letter (A-Z).

Note: You cannot use any of the reserved words listed
in Appendix A as variable names. However, reserved
words may be imbedded in a variable name.

The following are examples of variable names:

A
L

Al
L2

ADDRESS
LEN2

ADDRESS.OLD
LENGTH

The 2 types of variables are string and numeric. BASIC initially
classifies all variables as single precision with a value of zero
(0). (The next section describes how to declare variables as
string, integer, or double precision variables.)

The following examples assign a value to a variable.

LET A = 12345
A= 601 .432
BALANCE• 338.92

BASIC automatically stores all the above examples as double
precision numbers. Chapter 10, "BASIC Keywords," describes
more ways to assign values to variables.

Declaring Numeric Constants and Variables
BASIC lets you override its automatic classification of numeric
constants and variables.

Numeric Constants
To change the way BASIC stores a numeric constant, add one of
the following symbols to the end of the number. If BASIC must
shorten a number to meet the new requirements, it rounds the
number.

declares a single precision number. Fbr example, BASIC
stores the number 12.345678901234! as a single precision
number: 12.34568.

21

Ch.apter5

E declares the number a single precision exponential number.
For example, BASIC stores the number 1.2E5 as a single
precision number: 120000.

declares a double precision number. For example, BASIC
stores the number 1.5# as a double precision number: 1.5.
BASIC does not expand constants when declaring them dou­
ble precision.

D declares the number a double precision exponential number.
For example, BASIC stores the number 1.2D2 as a double
precision number: 120.

See the next section on converting numbers for important infor­
mation on converting from numbers to another precision.

Numeric Variables

BASIC initially classifies all numeric variables as double preci­
sion. You can declare variables as other than double precision in
2 ways:

• Append a symbol to the variable name:

22

% declares an integer variable. BASIC stores the value of
the variable as an integer. I%, FT%, and COUNTER%
are samples of integer-declared variables.

declares a single precision variable. BASIC stores the
value of the variable as a single precision number. F!,
NM!, and BALANCE! are samples of variables declared
as single precision. ·

declares a double precision variable. BASIC stores the
value of the variable as a double precision number. S#,
AD#, and YTDTOTAL# are samples of variables
declared as double precision.

$ declares a string variable. The value of the variable must
be enclosed in double quotes. A$, WRD$, and CITY$ are
samples of variables declared as string variables.

Note: Any variable name can represent 4 different
variables. For example, A5%, A5!, A5#, and A5$ are
all valid and distinct variable names.

BASIC Concepts

• Use the following BASIC statements:

DEFINT Defines specified variable(s) as integer.
DEFDBL Defines specified variable(s) as double precision.

(Since BASIC initially classifies all variables as
double precision, you need to use DEFDBL only if
one of the other DEF statements is used.)

DEFSNG Defines specified variable(s) as single precision.
DEFSTR Defines specified variable(s) as string.

Chapter 10 describes these BASIC statements fully.

Numeric Precision Conversion
Your program may ask BASIC to convert numeric data from one
precision to another. The following section describes this
procedure.

When converting single/double precision to integers, BASIC
rounds the fractional portion of the number, if any. For example:

A%= 32766.7
A% = -123.4567

BASIC stores as 32767
BASIC stores as -123

When converting double to single precision, BASIC rounds the
number to 6 significant digits. For example:

Al = l.2345678901234567 BASIC stores as 1.23457
Al = l.3333333333333333 BASIC stores as 1.33333

Since the Tandy 600 uses the BCD (Binary Coded Decimal) sys­
tem to perform mathematical operations, trailing zeroes are not
added to double precision numbers less than 14 digits long. For
example, even tliough BASIC stores A#= 1.5 as
l.5000000000000, it displays A#= 1.5 without the trailing
zeroes.

Manipulating Data
BASIC uses expressions as a way to manipulate data. An expres­
sion is 2 or more pieces of data connected by operators.

An operator is a symbol or a word that signifies some action to
be performed on the specified data. Each data item is called an
operand.

23

Chapter5

An expression might look like this:

operand!
6

operator
+

operand2
2

A few operators allow only one operand, for example:

operator operand
5

Expressions must be used in a BASIC statement, such as:

A • S + 2
PRINT -5

BASIC has four types of operators:

Arithmetic
String
Relational
Logical

used for numeric data only.
used for string data only.
used for both numeric and string data.
used for numeric data only.

Arithmetic Operators
Arithmetic operators perform operations on numeric data. Both
operands must be numeric. When BASIC evaluates the expres­
sion, all operands are converted to the same degree of precision,
that of the most precise operand. The result of the arithmetic op­
eration is also returned to this degree of precision.

The arithmetic operators are listed below. They are in order of
precedence, that is, the order in which BASIC executes them if 1
or more operators are in the same statement.

24

A Exponentiation. Calculates the power of a
number. Fbr example, 2"3 is 8 (2 to the power
of 3 is the same as 2*2*2).

Negation or Unary Minus. Makes a number
negative. Fbr example, -10 is "negative ten."

*, I Multiplication, Division. Fbr example, 3*3 is 9,
and 10/5 is 2.

BASIC Concepts

\ Integer Division. BASIC rounds both operands
to integers and truncates the result to an in­
teger. Integer division is faster than standard
division. For example, 10\4 is 2.

MOD Modulus Arithmetic. BASIC performs integer
division as described above and returns the
remainder as an integer value. Fbr example, 10
MOD 3 results in 1.

+, - Addition, Subtraction. For example, 2 + 9 is 11,
and 15-8 is 7.

String Operator

The string operator is the plus sign (+). It appends one string to
another. All operands must be strings, and the resulting value is
1 string. Fbr example:

PRINT "APRIL SHOWERS II + "BRING" + II MAY
FLOWERS."

prints APRIL SHOWERS BRING MAY FLOWERS.

Relational Operators

Relational operators compare 2 pieces of numeric data or 2 pieces
of string data. The result of the comparison is either true or
false. If the relationship is true, BASIC returns -1. If the rela­
tionship is false, BASIC returns 0 (zero).

The relational operators are, in order of precedence:
= Equal. Both operands are equal.

< Less Than. The first operand is less
than or precedes the second operand.

> Greater Than. The first operand is
greater than or follows the second
operand.

><or<> Inequality. The operands are not
equal.

< = or = < Less Than or Equal To. The first oper­
and is less than (precedes) or is equal

. to the second operand.

25

Chapter 5

> = or = > Greater Than or Equal To. The first
operand is greater than (follows) or is
equal to the second operand.

Relational operators are usually used within an IF/THEN state­
ment. For example:

IF A• 1 THEN PRINT "CORRECT"

BASIC looks at the value in variable A. If the value is equal to
1, BASIC prints the word CORRECT.

If arithmetic and relational operators are combined in the same
expression, BASIC evaluates the arithmetic operations first. For
example:

IF X•Y/2 <= 15 PRINT "AVERAGE SCORE"

BASIC performs the arithmetic operation X*Y/2 and then com­
pares the result with 15.

When relational operators are used with strings, BASIC
compares the strings character by character. When it finds 2
characters that do not match, it checks to see which character
has the lower value ASCII code. The character with the lower
ASCII code comes before the word with the higher ASCII value
in an alphabetical listing, just as one word comes before another
in a dictionary.

Consider these examples:

"A" < 11 8 11

BASIC compares the ASCII value of the 2 strings. The ASCII
value for A is 65, and the ASCII value for B is 66. Since 65 is
less than 66, BASIC returns a -1. BASIC displays the result if
you type PRINT and the expression. For example, PRINT
"A">"B".

"CODE"> "COOL"

This is false. The first 2 characters of the strings match. How­
ever, the third character does not. BASIC then compares the AS­
CII codes. The ASCII code for Dis 68 and the code for O is 79.
Since 79 is not less than 68, BASIC returns a 0.

"TRAIL"< "TRAILER"

This is true. If BASIC reaches the end of one string before find­
ing 2 characters that don't match, the shorter string is consid­
ered the less of the two strings (lower in precedence). Therefore,
TRAIL is the lesser of the two strings.

26

BASIC Concepts

Also note that ~. blanks are significant in string compari­
sons. Therefore, "A" comes before "A" because the ASCll code
for blank is 32 and the ASCil code for A is 65.

Lbgieal Operators
Logical operators, or Boolean operators, make logical compari-
sons of numeric values. The logical operators are NOT, AND,
OR, XOR, EQV, and IMP. They take a set of true/false values,
usually from relational expressions, and return a true or false
result.

The following table describes the result for each logical operator
given the described true/false values.

Meaningof. First Second
Operator Operation Operand Operand Result

NOT The result is the oppo- 1 0
site of the operand. t 1

AND When both values are 1 1 1
true, the result is 1 t t
true. Otherwise, the 0 1 t
result is false. t t •

OR When both values 1 1 1
are false, the 1 t 1
result is false. 0 1 1
Otherwise, the 0 t 0
result is true.

XOR When one of the 1 1 t
values is true, the 1 0 1
result is true. 0 l 1
Otherwise, the t t 0
result is false.

EQV When both values l l l
are true or both 1 0 0
values are false, 0 1 0
the result is true. 0 0 l

Chapter 5

Meaning of
Operator Operation

IMP The result is true
unless the first
value is true and
the second value is
false.

First
Operand

1
1
0
0

Second
Operand

1
0
1
0

Result

1
0
1
1

Normally, logical operators are used in IF/THEN statements. Fbr
example:

IF A• 1 DR C • 2 THEN PRINT X

BASIC prints the variable X if 1 or both of the relational expres­
sions are true. If both are false, BASIC does not print the vari­
able X.

IFS$• "TEXAS" AND C$ • "AUSTIN" THEN PRINT 2$

BASIC prints the value of Z$ if S$ contains the word TEXAS
and C$ contains the word AUSTIN.

You may also use logical operators to make bit comparisons of 2
numeric expressions. In this case, BASIC does a bit-by-bit com­
parison of the 2 values, according to predefined rules for the spe­
cific operator. Note that the operands are converted to integer
type, stored internally as 16-bit, two's complement numbers.
This information is important when doing bit comparisons.

Hierarchy of Operators

BASIC uses a predefined hierarchy when performing operations
on expressions with multiple operators. This list shows the oper­
ators in the order that BASIC would perform the operations in a
statement. Remember, BASIC evaluates statements from left to
right. Operators with the same level of hierarchy are shown on
the same line.

28

"
unary -
* I
\
MOD
+ -
< > = <= >= <>
NOT
AND
OR,XOR
EQV
IMP

BASIC Concepts

Consider this expression:

X * X + 5A2.8

BASIC evaluates 5 to the 2.8 power first, then multiplies X*X,
and finally adds the 2 values.

You can change the order of the hierarchy by adding parentheses
to an expression. BASIC always evaluates the expressions inside
the parentheses before evaluating the rest of the expression.
Look at this expression:

X * (X + 5Y2.8

BASIC evaluates the expression (X + 5) first and raises that
value to the 2.8 power before performing the multiplication.

If an expression contains multiple parentheses, BASIC evaluates
the innermost parentheses first.

Functions

A function is a built-in sequence of operations that BASIC per­
forms on data. BASIC always performs functions first when eval­
uating a statement.

Numeric functions, such as ABS, SQR, and COS, perform prede­
fined operations on numeric data.

String functions, such as MID$, VAL$, and LEN$, perform oper­
ations on string data.

Functions are described in Chapter 10.

29

Chapter 6

ARRAYS

An array is a group of related data values stored consecutively
in memory. The entire group of data values is referred to by one
variable name. Each data value is called an e/,ement of the array.
A subscript is an integer used to refer to each element of the
array. For example, an array named A may contain 3 elements
referred to as:

A(l) A(2) A(3)

You can use each of these elements to store a separate data
value, such as:

A(l) = .10
A(2) = .20
A(3) = .30

You can imagine an array as a row of boxes, with the numbers
on them to identify them. Each box can hold a different value.
For example, Array A may hold your expenses.

A(l) A(2) A(3)

Grocery Gas Clothes
Expense Expense Expense

Array A

This is a !-dimensional array, because elements are arranged in
a single row and only one subscript is used to an element. For
example, A(l) holds your grocery expense.

This program creates a !-dimensional array:

5 CLS
10 DATA GROCERY,GAS,CLOTHES
20 DIM AC3>
30 FOR C = 1 TO 3
40 READ NAMES$
50 PRINT "ENTER THE "NAMES$" EXPENSE IN DOLLARS"
60 INPUT ACC>
70 NEXT C

The DIM statement in Line 20 reserves space in memory for an
array named A with 3 elements. As you enter the expenses, the
grocery expense is stored in A(l), the gas expense in A(2) and
the clothes expense in A(3).

31

Chapter 6

Add these lines to the program to print the contents of Array A:

1 00 RESTORE
110 FOR C • 1 TO 3
120 READ NAMES$
130 PRINT:PRINT NAMES$"•" ACC)
140 NEXT C

Use RUN to see the results of this program.

You can add more dimensions to the array such as storing the
expenses by weeks.

Row 1
Week 1

Row2
Week2

Row3
Week3

Row4
Week4

Col 1
Grocery

Col 2
Gas

A(3,2) =
Gas expense
for Week 3

Col 3
Clothes

This is a 2-dimensional array. Each element is referred to by 2
subscripts:

A(row ,column)

Fbr example, A(3,2) points to the third week's gas expense.

To make a 2-dimensional array from the earlier program, add
the following lines:

32

25 FOR R = 1 TO 4:RESTORE
75 NEXT R
105 FOR R • 1 TO 4:RESTORE
150 NEXT R

Arrays

and change these lines:

20 DIM AC4,3): W = 1
50 PRINT "ENTER THE " NAMES$ " EXPENSES IN DOL-

LARS FOR WEEK NO: "W
60 INPUT ACR,C>
70 NEXT C: W = W + 1
100 RESTORE: W • 1
130 PRINT:PRINT NAMES$" EXPENSE FOR WEEK NO: "

w .. " II ACR,C)
140 NEXT C:W = W + 1

Run this program and see how it works. We simply added
another subscript to the original array. Now instead of referring
to an element by a row number only, we refer to it by both a row
and column number.

You can add yet another dimension, or subscript, to the array by
adding these lines:

22 FOR P • 1 TO 2: RESTORE
78 W • 1: NEXT P
102 FOR P = 1 TO 2: RESTORE
160 W = 1 :NEXT P

and changing these lines:

20 DIM AC2,4,3):W = 1: M = 1
50 PRINT "ENTER THE" NAMES$" EXPENSE IN DOL-

LARS FOR WEEK NO:" W II OF MONTH NO:" M
60 INPUT ACP,R,C>
75 NEXT R: M = M + 1
100 RESTORE: W = 1: M = 1
130 PRINT:PRINT NAMES$ 11 FOR WEEK NO: 11 W II OF

MONTH NO: II M II. II ACP,R,C)
150 NEXT R: M = M + 1

33

Chapter 6

Run the program to see how it works.

Row 1
Week 1

Row2
Week2

Row3
Week3

Row4
Week 4

A<l,2,1 > -

Grocery Exp.
for Wk I

of Month I

Col 1
Grocery

Col 2
Gas

Col 3
Clothes

Imagine the third dimension as an entirely new page. Here, you
refer to an element in the array by using 3 subscripts:

A(page, row, column)

For example, in A(l,2,1), the first subscript (1) stands for the
mobth. The second subscript (2) stands for the week and the
third subscript (1) stands for the Grocery category. So A(l,2,1)
contains the Grocery expense for the second week of the first
month.

Types of Arrays

Arrays may be of any type: string, integer, single precision, or
double precision. You can have a maximum of 255 dimensions in
your array and a maximum of 32,767 elements in each dimen­
sion.

The amount of memory that an array occupies is equal to the
number of bytes it takes to store that type of variable times the
number of elements. For example, if you have a double precision
array of 30 elements, it occupies 240 bytes of memory. Remem­
ber, double precision numbers are stored in 8 bytes of memory.

34

Arrays

Defining Arrays
You can define arrays in your BASIC program by placing a DIM
statement at the beginning of your program or by setting the
value of an element in the program. For example:

ACS)= 300

automatically creates an array named A containing 6 elements
and assigns element A(5) the value 300. Use this method only if
your array contains fewer than 11 elements (0-10). If your array
contains more than 11 elements, you must use the DIM
statement.

Use a DIM statement to reserve space in memory for each ele­
ment of the array. For example:

DIM C#C99)

creates Array C and reserves memory space for 100 double preci­
sion elements.

See the DIM statement in Chapter 10 for more information on
creating arrays.

35

Chapter 7

FILES

You may want to store data on disk for future use. To do this,
you need to store the data in a fil,e. A file is an organized collec­
tion of related data. It may contain a mailing list, a personnel
record, or almost any kind of information.

You access this information in records. A record is a small por­
tion of data from the disk file such as a name and address in a
mailing list file. A record is the largest block of information that
you can address with a single command.

With BASIC you can create and access 2 types of files: sequen­
tial access or direct access.

Sequential Access Files
With sequential access files, you can access data only in the
same order as it was originally stored. To read from or write to a
particular section in the file, you must first read through all the
records in the file from the beginning until you get to the
desired record.

Data is stored in a sequential access file as ASCII characters.
Therefore, it is ideal for storing free-form data without wasting
space between data items. However, it is limited in flexibility
and speed.

The statements and functions used with sequential files are:

WRITE#
PRINT#
PRINT USING #

LOC
INPUT#
LINE INPUT#

EOF
LOF

OPEN
CLOSE

These statements and functions are discussed in more detail in
Chapter 10.

Creating a Sequential Access File

1. To create the file, open it in Output mode and assign it a
buffer number in the range 1 to 15. Fbr example:

OPEN "li!lt.dat" FDR OUTPUT AS 1

The OPEN statement opens a sequential output file named
list.dat and gives Buffer 1 access to this file.

37

Chapter 7

2. To input data from the keyboard into 1 or more program vari­
ables, use either INPUT or LINE INPUT. For example:

LI NE INPUT' "NAME? II; NS

inputs data from the keyboard and stores it in variable N$.

3. To write data to the file, use the WRITE# statement (you
also can use PRINT#, but be sure you delimit the data). For
example:

WRITE# 1, NS

writes variable N$ to the file, using Buffer 1 (the buffer used
to open the file). Remember that data must go through a
buffer before it can be written to a file.

4. To ensure that all the data has been written to the file, use
the CLOSE statement. For example:

CLOSE 1

closes access to the file that uses Buffer 1 (the same buffer
used to open the file).

Sample Program
10 OPEN "list.dat" FOR OUTPUT AS 1
20 LINE INPUT "ENTER A NAME OR 'DONE' TO END >

II; NS
30 IF NS = "DONE" THEN 60
40 WRITE# 1, NS
50 PRINT: GOTO 20
60 CLOSE 1

The file list.dat stores the data you input through the aid of
the program, not the program itself. To save the program
above, you must assign it a name. Use the SAVE command as
described in Chapter 3. For example, SAVE "payroll.bas".

Every time you modify a program, you must save it again
(you can use the same name); otherwise, the original pro­
gram remains on disk, without your latest corrections.

5. To access data in the file, reopen it in the Input mode. For
example:

38

OPEN "list.dat" FOR INPUT AS 1

opens the file named list.dat for sequential input, using
Buffer 1.

Fiks

6. To read data from the file and assign it to program variables,
use either INPUT# or LINE INPUT#. For example:

INPUT# 1, NS

reads a string item into N$, using Buffer 1 (the buffer used
when the file was opened).

LINE INPUT# 1, NS

reads an entire line of data into N$, using Buffer 1.

Sample Program
10 OPEN "list.dat" FOR INPUT AS 1
20 IF E0f(1), THEN 100
30 INPUT#1 , NS
40 PRINT NS
50 GOTO 28
108 CLOSE 1

Updating a Sequential Access File
1. To add data to the file, first open it. Fbr example:

OPEN "list.dat" FOR APPEND AS 1

opens the file list.dat so that it can be extended. The data you
enter can be appended to the file list.dat.

2. To enter new data to the file, follow the same procedure as for
entering data in the Output mode.

The following program illustrates this technique. It builds
upon the file previously created.

Note: Read through the entire program first. If you
encounter BASIC keywords that are unfamiliar to you,
refer to Chapter 10 for their definitions.

Sample Program•·
18 OPEN "list.dat" FOR APPEND AS 1
20 LINE INPUT "TYPE A NEW NAME OR PRESS <N> ";

NS
38 IF N$ = "N" THEN 60
4f WRITE# 1, NS
51 GOTO 20
68 CLOSE 1

39

Chapter 7

If you want the program to print on your display the informa­
tion stored in the updated file, add the following lines:

70 OPEN "list.dat" FOR INPUT AS 1
80 IF EOFC1> THEN 200
90 INPUT# 1, N$
100 PRINT N$
110 GOTO 80
200 CLOSE 1

After you have run this program, save it. Fbr example, type
SAVE "payroll2.bas" to save the program under a different
name than the previous program.

Direct Access Files
With a direct access file, you can access data anywhere within
the file. It is not necessary to read through all the information,
as with a sequential access file, because in a direct access file
you can access each record of information individually by its
number.

More program steps are required to create and access direct
access files, but they are more flexible and easier to update than
sequential access files.

BASIC allocates space for records in numeric order. That is, if
the first record you write to the file is number 200, BASIC allo­
cates space for records 0 through 199 before storing record 200
in the file.

The maximum number of logical records is 16,777,215. Each
record may contain a minimum of 1 and and a maximum of
32768 bytes.

The statements and functions used with direct access files are:

OPEN
CLOSE
MKD$
CVD
LOC

FIELD
GET
MK!$
CVI
LOF

LSET/RSET
PUT
MKS$
CVS

These statements and functions are discussed in more detail in
Chapter 10.

40

Fiks

Creating a Direct Aeeess File
1. To create the file, open it for random access in Random mode.

Fbr example:

OPEN "list.dat" AS 1 LEH•32

opens the file named listing.dat, gives Buffer 1 direct access
to the file, and sets the record length to 32 bytes. (If you omit
the record length, the default is 128 bytes.) Remember that
data is passed to and from the disk: in records.

2. Use the FIELD statement to allocate space in the buffer for
the variables that will be written to the file. This is neces­
sary because you must place the entire record into the buffer
before putting it into the disk: file. Fbr example:

FIELD 1, 20 AS HS,• AS AS,8 AS PS

allocates the first 20 positions in Buffer 1 to string variable
N$, the next 4 positions to A$, and the next 8 positions to P$.
The variables N$, A$, and P$ are now "field names:"

3. To move data into the buffer, use the L$ET statement.
Numeric values must be converted to strings when placed in
the buffer. To do this, use the make functions: MK!$ to make
an integer value into a string, MKS$ for a single precision
value, and MKD$ for a double precision value. For example:

LSET HS•X$
LSET A$•MKS$CAMT>

4. To write data from the buffer to a record (within a direct
access disk file), use the PUT statement. For example:

PUT 1, CODEX

writes the data from Buffer 1 to a record with the number
CODE%. (The percentage sign at the end of a variable speci­
fies that it is an integer variable.)

41

Chapter 7

The following program writes information to a direct access
file:

10 OPEN "listing.dat" AS 1 LEN•32
20 FIELD 1, 20 AS NS, 4 AS A$, 8 ASP$
30 INPUT "2-DIGIT CODE, 0 TD END"; CODE¾
40 IF CODE¾• 0 THEN 130
50 INPUT "NAME"; XS
60 INPUT "AMOUNT"; AMT
70 INPUT "PHONE"; TEL$
80 LSET N$ • X$
90 LSET A$• MKS$CAMT>
100 LSET PS• TEL$
11 0 PUT 1, CODE%
120 GOTO 30
1 30 CLOSE 1

The 2-digit code that you enter in Line 30 becomes a record
number. That record number stores the name(s), amount(s),
and phone number(s) you enter when Lines 50, 60, and 70 are
executed. The record is written to the file when BASIC exe­
cutes the PUT statement in Line 110.

After typing this program, save it and run it. Then, enter the
following data:

20 I ENTER I

0 I ENTER I
BASIC stores SMITH, 34.55, and 567-9000 in Record 20 of
file listing.dat.

Accessing a Direct Access File

1. Open the file in Random mode:

OPEN "listing.dat" AS 1 LEN•32

2. Use the FIELD statement to allocate space in the buffer for
the variables that will be read from the file. For example:

FIELD 1, 20 AS N$, 4 AS A$, 8 AS PS

3. Before you use the GET statement to read the record, you can
check to see if the record is in your file. Set a variable in
your program equal to the record size you used in the OPEN
statement. LOF returns the length of the file in bytes. The
total number of bytes in the file divided by the record size is
equal to the largest record number in the file. An attempt to
access a record number greater than the largest record num­
ber in the file results in an "Input past end" error.

42

Fiks

For example:

RECSIZE = 32
IF CODE¾> CLOFC1) / RECSIZE¾> THEN 1000

4. Use the GET statement to read the desired record from a
direct disk file into a buffer. For example:

GET 1, CODE¾

gets the record numbered CODE% and reads it into Buffer 1.

5. Convert string values back to numbers using the "convert"
functions: CVI for integers, CVS for single precision values,
and CVD for double precision values. For example:

PRINT N$
PRINT CVSCA$)

The program may now access the data in the buffer.

The following program accesses the direct access file list­
ing.dat (created with the previous program). When BASIC
executes Line 30, enter any val;,d record number from list­
ing.dat. This program prints the contents of that record.

10 OPEN "listing.dat" AS 1 LEN•32
20 FIELD 1,20 AS N$,4 AS A$,8 ASP$
30 RECSIZE¾ = 32
40 INPUT "2-DIGIT CODE, 0 TO END"; CODE¾
50 IF CODE¾ •0 OR CODE¾> CLOFC1)/RECSIZE¾> THEN

1000
60 GET #1, CODE¾
70 PRINT N$
80 PRINT USING"$$#,##"; CVSCA$)
90 PRINT P$: PRINT
100 GOTO 40
1000 CLOSE 1

After typing this program, save it and run it. When BASIC
asks you to enter a 2-digit code, enter 20 (the record created
through the previous program). Your display should show:

2-DIGIT CODE, 0 TO END? 20
SMITH
$34.55
567-9000

If you enter a record number that is not part of listing.dat,
your display shows:

$0. 00

To update listing.dat, simply use LOAD to load the previous
program (the one that created listing.dat) and run it.

43

Chapter 8

USING MACHINE LANGUAGE

SUBROUTINES

Using DBCALLS.LIB
The Tandy 600's BASIC Interpreter, when used with the
DBCALLS.LIB file supplied on the master diskette that came
with your computer, gives you complete access to the same type
of databases you create using FILE. You can add, delete, and
move records; sort or modify them; and output the data in any
form you desire. When you load the DBCALLS.LIB file into
RAM and access it using a LIBRARY statement you essentially
gain an additional 28 BASIC commands in the form of database
CALLS. At the end of this chapter, there is a sample program
that extracts records from a name-and-address database and
prints them in mailing-label format using many of these new
commands. During the explanation of the various DBCALLS we
will use sample lines from this program as illustration. When an
example of a particular call includes a line number, it comes
from this sample program.

The general sequence of events is then as follows. First you open
the FILE database. Next you determine the id numbers of the
fields within the file which you will be using. Then you can open
the record you desire, and read or write any selected fields
within that record into string or numeric variables. After closing
the record, you can repeat the process;

Before you can make use of the calls, you must load the
DBCALLS.LIB file into RAM and access it within your BASIC
program using the LIBRARY command:

LIBRARY "DBCALLS. LIB"

To close the library after using 1 or more of the subroutines,
type:

LIBRARY CLOSE

Following are explanations of the 28 machine-language subrou­
tines in the DBCALLS.LIB library.

45

ChapterB

DATABASE-ORIENTED CALLS
CALL DBCREATE ("filename". handle)

Creates a FILE-compatible database. The filename should
include the .DAT extension if it will be used directly with FILE.
A numeric variable, 'handle', is returned. This handle is used to
identify the file in all later database calls.

EXAMPLE- CALL DBCREATE ("MAILLIST.DAT",Hl)

CALL DBOPEN ("filename", access, handle)

Opens an existing database. The 'access' variable specifies
whether the file is opened for reading, writing, or both, as
follows:

0 - Read only access
1 - Write only access
2 - Both read and write access

CALL DBOPEN returns a unique numeric ''handle" that is used
to specify the file in all subsequent database calls.

EXAMPLE- 20 READ A$: CALL DBOPEN (A$,0,H)

CALL DBCLOSE (handle)

This is the reverse of the above commands. It closes down the
file specified by 'handle' which had earlier been opened using
either the DBCREATE or DBOPEN call.

EXAMPLE- 500 PRINT "No More Records": CALL
DBCLOSE (H)

CALL DBDELETE ("filename")

Deletes from memory the file with the name "filename."

EXAMPLE- CALL DBDELETE ("clients.dat")

46

Using Machine Language Subroutines

CALL DBERROR (errorcode)

If an error occurs while using a database call, BASIC returns
the generic "ILLEGAL DATABASE" error, whose code number is
91. When this happens, you should execute a CALL DBERROR.
Into the numeric variable 'errorcode' a new code number is
returned indicating what type of database error actually
occurred. For a list of these database-specific error codes see
Chapter 12.

EXAMPLE- 1000 IF ERR<>91 THEN PRINT ERR"in
line"ERL:GOTO 500

1010 CALL DBERROR(X)
1015 IF X=66 THEN 500
1020 PRINT "Database Call Error # "x"in

line"ERL: GOTO 500

RECORD-ORIENTED CALLS
CALL RNUMF (handle, number-of-records)

This call returns the number of records in the database specified
by 'handle' into the number-of-records numeric variable.

EXAMPLE- 25-CALL RNUMF(H,RT): PRINT"
"RT"RECORDS IN IT."

CALL RCREATE (handle, [record-#])

Creates an empty record in the file specified by handle, at the
position indicated by record-#. Valid Record-#'s range from 0 to
4095. Record-# can be omitted, in which case the record is cre­
ated at the end of the file.

EXAMPLE- CALL RCREATE (Hl,2): REM creates a
record#2

CALL ROPEN (handle, record-#, [access])

Opens an existing record in preparation for reading, writing, or
combined access as determined by the optional variable 'access.'

0-read-only access
1 - write-only access
2 - combined read-write access

If this parameter is omitted, the type of access will default to
the one chosen when the file was opened.

47

Ch.apter 8

EXAMPLE- 200 FOR X = 0 TO RT-1
210 CLS: PRINT "RECORD #"X + 1:

PRINT
215 CALL ROPEN (H,X)

CALL RCLOSE (handle, [record-#])

Close the record previously opened using RCREATE or RO PEN.
Record-# is optional: when the call is completed it holds the
number of the record which was closed.

EXAMPLE- 235 NEXT: CALL RCLOSE CH)

CALL RDELETE (handle, record-#)

Deletes the record with the specified record-#.

EXAMPLE- CALL RDELETE (DHANDLE, RNUMBER)

CALL RMOVE (handle, old-record-#, new-record-#)

Moves the record specified by old-record-# to the one specified by
new-record-#.

EXAMPLE- CALL RMOVE (H,2,1):CALL RMOVE
(H,3,2):CALL RMOVE (H,1,3)

CALL RFIND (handle, starting-rec-#, direction, query-key­
array(), found-rec-#)

RFIND executes a search of the database, starting from 'start­
ing-rec-#' and continuing in the specified direction (where
0 = forward and 1 = backward) until the next record is found
which satisfies the conditions contained in the search-key-array.
Search-key is a numeric array which is built using the database
query calls described below. The matching record will have its
record-# placed in the 'found-rec-#' variable.

EXAMPLE- 205 IF OF THEN CALL RFIND
(H,X,0,QO,X)

FIELD-ORIENTED CALLS
CALL FGID (handle, "fieldname", field-id)

Given a field name, the FGID call returns the id number of that
field. The rest of the field-oriented database calls, including those
which get information to and from a file, use this field-id to refer
to the desired field. Case is not important in specifying the field
name. ID#'s may not be in the same order as they appear when
using FILE.

48

Using Machine Language Subroutines

EXAMPLE- 30 READ FT: FOR X = 1 TO FT
40 READ F$(X),P(X): CALL

FGID(H,F$(X),F(X))
48 NEXT
999 DATA 6,First.Name,l,Last.Name,l,

Address,2,City ,3,ST ,3,Zip,3

CALL FGTYPE (handle, field-id, field-type)

This call returns in the numeric 'field-type' variable the kind of
data which is in the field. Valid field types are: 1- Character/
String, 2- Numeric Double Precision, 3- Date.

EXAMPLE- 30 FOR X = 1 TO FT
42 CALL FGTYPE(H,F(X),T(X): REM

place fieldtype in T
48 NEXT

CALL FGNAME (handle, field-id, fieldname$)

Given the field-id number, the FGNAME call returns the field
name into a string variable.

EXAMPLE- CALL FGNAME (Hl, 2, f2$): 'put field w.
id2 into f2$

CALL FCREATE (handle, "fieldname", fieldtype, field-id)

Creates a new field within the database specified by 'handle,'
with the title of 'fieldname', and of the type specified by 'field­
type.' (Valid fieldtypes are discussed as part of the FGTYPE call
above.) The id of the new field is returned in the field-id numeric
variable.

EXAMPLE- CALL FCREATE (FHANDLE, "Comments",
1, FI)

CALL FDELETE (handle, "fieldname")

Deletes the field specified by "fieldname."

EXAMPLE- A$= "Comments": CALL FDELETE
(FHANDLE, A$)

49

Chapter 8

CALL FPUT (handle, field-id, put-variable)

Puts data into the field specified by field-id. The put-variable
which holds the data must match the type defined for that field.
The field type can be determined by executing the FGTYPE call
described above.

EXAMPLE- CALL FPUT (Hl,F(l),"Juge"): CALL
FGPUT (Hl,F(2),"Ed")

CALL FGET (handle, field-id, get-variable)

Gets data from the specified field and puts it into get-variable.
The file must be open to a specific record (see record oriented
calls above.) The type of get-variable (numeric or string) must be
the same as that defined for the field, which can be determined
with the FGTYPE call.

If the data is a string, space must be allocated ahead of time to
the variable which is to receive the field data. If the field con­
tains more characters than does the get-variable string which
will hold it, then data will be truncated to the exact length of
the get-variable. If, however, the get-variable is longer than the
string stored in the database field, the entire field will be read in
and the get-variable length will be set to the length of the data­
base data.

Database data is physically transferred to the receiving variable:
therefore, if the get-variable is defined within the program itself,
upon performing the FGET call, the actual program may be
changed. To avoid this, it is highly recommended that such state­
ments as:

A$= "String for Receiving Data"

be changed to:

A$= "String for Receiving Data"+" "

The concatentation of two strings forces the resultant string to
be defined outside of program space, circumventing accidental
modification of any program lines.

50

Using Machine Language Subroutines

EXAMPLE- 6 ZZ$ =" "+" "
220 FOR Y=l TO

FT
225 D$(Y) = ZZ$
230 IF T(Y) = 2

THEN CALL
FGET (H,
F(Y), D(Y))
ELSE CALL
FGET (H,
F(Y), D$(Y))

235 NEXT:

BASIC supports character strings and BCD (Binary Coded Deci­
mal) numbers internally, and no special conversion is needed for
these values.

Since this has no internal BASIC counterpart, date fields must
be passed to the database library as an INTEGER array with
the following assignments:

Array Element #
0 Year
1 Month
2 day
3 hour
4 minute
5 second
6 hundredths of second

The array passed must be passed by reference (i.e. "DATE()").

Date values, however, are somewhat different. The format of a
date field in a database file is an 8 byte value with the following
definition:

Byte 0-1: A 16 bit unsigned integer representing the year.

Byte 2: An 8 bit integer representing the month (1-12).

Byte 3: An 8 bit integer representing the day of the
month (1-31).

Byte 4: An 8 bit integer representing the hour of the day
in 24 hour format (0-23).

Byte 5: An 8 bit integer representing the minutes past
the hour (0-59).

Byte 6: An 8 bit integer representing the seconds past
the minute (0-59).

51

Chapter8

Byte 7: An 8 bit integer representing the hundredths oJ
a second past the second (0-99).

CALL FRGET (handle, record-#, field-id, get-var)

Performs identically to FGET, except that the record specified in
record -# is used rather than the current open record. This can
eliminate the need to use the ROPEN and RCLOSE calls in
some situations.

EXAMPLE- REC=l: FID=l: A$=" "+" ":
CALL FRGET (Hl,REC,FID,A$)

CALL FRENAME (handle, old-name, new-name)

Renames the field specified by old-name to the name specified by
new-name. Both must be string expressions. FRENAME does not
affect field data - only field names.

DATA QUERYING
The following five calls are used to create a data query array.
This is a numeric array which holds (in a coded form) the
parameters which RFIND uses to discover matching records
within a database. The array's size determines the possible com­
plexity of the query.

CALL QSTART (handle, query-key-array() [,mode])

This call is used to begin the creation of a data query array. The
query-key-array should be the name of the array that will be
used to hold the completed query specification. The optional
mode parameter is used to limit the size (and thus complexity) of
the query. If it is not present or evaluates to zero, then the size
of query is automatically computed and adjusted as the query is
defined. Otherwise, a size may be predefined (it must be at least
7 bytes long) and the query defined by means other than the
query calls.

EXAMPLE- 4 DIM Q(100)
100 CALL QSTART (H, QO)

CALL QRSTART (handle, query-key-array())

This call is used to start a new query record definition.

EXAMPLE- CALL QRSTART (Hl, QUO)

52

Using Machine Language Subroutines

CALL QFIELD (handle, query-key-array(), field-id, opera­
tion, modifier, match-data)

This call is used to define the actual query, specifying the
fields(s) to search, the data to compare, and what type(s) of com­
parisons to make. It may be called more than once to create
complex queries, so long as there is room in the data query array
to hold the entire definition.

The query-key-buffer should be the name of the numeric array
which is holding the data query specification (e.g.: QO.) The
field-id specifies the field to use in the comparison. The operation
parameter must evaluate to one of the following values:

0 meaning '=' (equal to)
1 meaning '<>' (not equal to)
2 meaning'<' (less than)
3 meaning'>' (greater than)
4 meaning '< =' (less than or equal to)
5 meaning '> =' (greater than or equal to)

The modifier parameter must be an integer numeric value. 'lb
DBCALLS.LIB it is bit-encoded; that is, each bit that makes up
the value is used as a switch for a modification to the standard
query. The legal values are as follows:

0 No special modifications to this databse query.

2 All "*" and "?" characters are to be interpreted as
wild-card characters in string fields, and as a hex 'F'
in date fields. The default treats them as part of the
string and does not allow wild-card matches.

4 Indicates that case is not significant in string compar­
isons. The default assumes that case IS significant.

8 The match-data parameter in the call will specify the
field-id of an,other field to be used in the comparison.
The default assumes that the match-data parameter
holds a value which the field is to be compared
against.

These values may be added together to include more than one op­
tion in the modifier parameter. Fbr instance, a modifier parame­
ter of 6 indicates both wild-cards AND a case-insignificant
match should be used.

The final parameter, 'match-data' holds a value that will be
compared against the field specified by field-id. It could also hold

53

ChapterB

the name of a second field to be used in the comparison if the
appropriate modifier option has been selected.

EXAMPLE- 120 INPUT "WHICH FIELD TO SEARCH
UPON";SF

150 INPUT "WHICH KIND OF
MATCH";MT

160 INPUT "WHAT DATA TO COMPARE
AGAINST";MD$

170 :CALL QFIELD (H, QO, F(SF) , MT, 6,
MD$)

CALL QEND (handle, query-key-array() [,actual-size])

This call should be made at the completion of a query definition.
After a QEND call, no more query definition (QFIELD) calls are
allowed unless a new QSTART call is made. The optional nu­
meric parameter 'actual-size' returns the number of bytes that
the completed query definition required.

EXAMPLE- 180 INPUT "Further Matching (Y or N)";
A$

185 IF A$="y" OR A$="y" THEN 110
190 CALL QEND (H, Q()) : QF = 1

CALL QREND (handle, query-key-array())

This call is used to close the current query record definition.

EXAMPLE- CALL QREND (Hl, QUO)

SORTING
CALL DBSORT (handle, direction, field-id[, direction, tield­
id .. .])

This call sorts the database on the specified field-id(s) in a given
direction. The sort is made in ascending or descending order, de­
pending on .the value of direction. (0 being ascending, and 1
being descending.) Multiple sorts can be performed, with the
first one in the call taking highest priority. When additional
data is added to the file, it is NOT automatically placed in the
proper place. The sort should be executed again.

54

Using Ma.chine Language Subroutines

EXAMPLE- 60 X = 0:INPUT"Which field# should the
data be sorted by ";X

70 IF X>0 THEN PRINT"Sorting by
"F$(X);;CALL
DBSORT(H,0,F(X)):PRINT"Sorted."

SAMPLE PROGRAM
The following BASIC program utilizes many of the
DBCALLS.LIB calls to open an existing database and extract
and print mailing labels from it. Information about the database
is contained in the DATA statement on line 999, which can be
customized to allow the program to work with different data
files. The first item in the DATA statement is the name of the
database. Next is a number indicating how many fields will be
extracted from the database. Then each field name and the line
on the mailing label that it is to be printed upon is listed. These
must be in the order they are to be printed.

The program makes use of a number of variables, and the follow­
ing is a list of some of the important variables and what they
represent:

DO Array that holds any numeric data from the file.
D$0 Array which holds all string data from the file.
FO Array of database field i.d. numbers.
F$0 Array of database field names.
FT Total number of fields that program is interested in.
H Database handle; a unique numeric identifier for all db

calls.
PO Array indicating label line on which to print each field.
QO Array which holds critera for finding matching records.
QF Flag- whether to use all database records or do selective

matching.
RT Total number of records in file.
TO Array of field data types (numeric, date, or string).
ZZ$ Blank string used as buffer when getting string data fields.

REM***** TANDY 600 Databa5e Mailing Label5
Printer V01.00.00 *****

2 KEY OFF:CLS
4 DIM QC100),FSC10),FC10),DSC10),DC10),TC10),

PC10):REM 5et up all variable5
6 22$•" "+"":REM allocate 5pace
8 ON ERROR GOTO 1000
10 LIBRARY "DBCALLS.LIB": REM open datab5e call5

library
14 REM
15 REM****** Open file and check for field5 *****
16 REM

55

ChapterB

20 READ A$: CALL DBOPENCA$,0,H): REM read file name
and open file

21 COLOR 1 :PRINT "Opening Database "A$: COLOR 0
25 CALL RNUMFCH,RT):PRINT" "RT"Records in it.":

REM number-of-records
30 PRINT: READ FT: FOR X•1 TO FT
40 READ F$CX>,PCX>: CALL FGIDCH,F$CX>,FCX>>: REM put

each field.id in array F
42 CALL FGTYPECH,FCX>,TCX>>: REM put each field.type

in array T
44 PRINT "Field#"X,F$CX>,
46 IF TCX)•2 THEN PRINT " -Numeric" ELSE PRINT " -

Alpha"
48 NEXT
50 PRINT 11 ,;i..L YOUR FIELDS ARE F•UND.":PRINT
54 REM
55 REM***** Sort the file on a field*****
56 REM
60 X•0:INPUT "Which field# should the data be sorted

b "; X
70 Ir X•0 THEN PRINT "Not being sorted ... "
75 IF X>0 THEN PRINT "Sorting by ",-$CX);:CALL

DBSORTCH,0,FCX»:PRINT ".Sorted."
80 INPUT "Select only certain records? CY or N)";A$
90 IF A$•"n" OR A$•"N" THEN QF•0: GOTO 200
94 REM
95 REM***** Create a query array to select specific

records with*****
96 REM
100 CALL QSTART CH,QC)): REM start the definition

process using array Q
110 CLS: FOR X•1 TO FT: PRINT: PRINT X"-- "FHX>,:

NEXT: REM list the fields
120 INPUT "WHICH FIELD TO SEARCH UPON";SF
130 PRINT: PRINT " 0 -- Equal": PRINT " 1 -- Not

Equal"
135 PRINT: 2 -- Less Than": PRINT" 3 -- Greater

Than"
140 PRINT" 4 -- Less or Equal": PRINT" 5 -­

Greater or Equal",
150 INPUT "WHICH KIND OF MATCH";MT
160 PRINT: INPUT "WHAT DATA TO COMPARE

AGAINST";MD$:MD•VALCMD$)
170 IF TCSF)•2 THEN CALL

QFIELDCH,QC),FCSF),MT,6,MD>:REM add a numeric
compare

175 IF tCSF><>2 THEN CALL
QFIELDCH,QC),FCSF>,MT,6,MD$):REM ... or string

180
185
190

194
195
196
200

56

compare
INPUT" Further Matching? CY or N)";A$
IF A$•"" OR A$="Y" THEA 110
CALL QE~DCH,QC)): QF•1: REM finished creating
the query array
REM
REM***** Read the actual file*****
REM
FOR X•0 TO RT-1

Using Machine Language Subroutines

205

215
220
225
230

IF QF THEN CALL RFINDCH,X,0,QC),X): REM use Q
array to find matching rec.#
CALL ROPENCH,X): REM open the record
FOR Y=1 TO FT
D$CY>=ZZ$: REM blank out some string space
IF TCY)=2 THEN CALL FGETCH,FCY),DCY)) ELSE CALL
FGETCH,FCY),D$CY>>:'get it

235

237
238
239
240
245

NEXT: CALL RCLOSECH>: REM close record when done
reading

250

255
260

REM
REM***** Print a mailing label *****
REM
FOR Y•1 TO FT
IF TCY>=2 THEN LPRINT DCY)" "; ELSE LPRINT
D$CY)" ";
IF PCY)<>PCY+1) THEN LPRINT: REM start new
of the label
NEXT
FOR Z=PCY-1) TO 5:LPRINT:NEXT: REM 3 spaces
between labels
NEXT X
REM
REM***** Close down the file and exit ****
REM

line

270
494
495
496
500 PRINT "No Further Records": CALL DBCLOSECH):

close file ...
REM

510
520
530
990

LIBRARY CLOSE: REM ... and the library
PRINT "PROGRAM RUN IS COMPLETE."
END
REM

995 REM***** Program data and Error-handling*****
996 REM
999 DATA sample.DAT,6,First Name,1 ,Last Name,1,

Address,2,City,3,ST,3,Zip,3
1000 IF ERR <>91 THEN PRINT "Error"ERR"in Line"ERL:

GOTO 500
1010 CALL DBERRORCX>: REM discover database-specific

error code
1015 IF X•66 THEN 500: REM error 66 means 'no­

records-match'
1020 PRINT "Database Call Error #"X"in line"ERL:

GOTO 500

57

Chapter 9

INTRODUCTION TO BASIC KEYWORDS

BASIC is made up of keywords. These keywords instruct the
computer to perform certain operations.

Chapter 10 describes all of the Tandy 600's BASIC's keywords.
This chapter explains the format used in Chapter 10. It also
gives a quick summary of all of BASIC's keywords.

Format for Chapter 10

Keyword

Syntax

Brief definition of keyword.

Statement
Function

Detailed definition of keyword and any parameters or argu­
ments fur that keyword.

Example(s)

Sample Program(s)

This format varies slightly, depending on the complexity of each
keyword. Fbr instance, some keywords require certain parame­
ters or arguments and others do not.

Some keywords are followed by defining words that explain how
to use the command. An example is:

Trap used for event trapping

There are more, but they should be self-explanatory.

Some keywords have sample programs that further explain their
use or illustrate useful applications that may not be readily
apparent.

Important Note: Tandy 600 Handheld BASIC
requires that keywords be delimited by spaces. This
means that you must leave a space between a keyword
and any variables, constants, or other keywords. The
only exceptions to this rule are characters that are
shown as part of the syntax of the keyword.

59

Chapter 9

For example, if you type:

SOUND1200,12 IENTERI

BASIC returns a "Syntax error." You must leave a
blank space between the word SOUND and the fre­
quency and duration parameters.

Terms Used in Chapter 10
line

integer

string

number

dummy number
or dummy string

60

A numeric expression that identifies a
BASIC program line. Each line has a
number in the range 0 to 65529.

Any integer expression. It may consist of
an integer or of several integers joined by
operators. Integers are whole numbers
and may be in the range -32768 to 32767
unless otherwise specified.

Any string expression. It may consist of a
string, several strings joined by opera­
tors, or a string variable. A string is a
sequence of characters that is to be taken
verbatim.

Any numeric expression. It may consist of
a number, several numbers joined by
operators, or a numeric variable.

A number (or string) used in an expres­
sion to meet syntactic requirements, but
the value of which is insignificant.

Introductwn to Basic Keywords

Statements
A statement tells the computer to perform some operation. The
following is a brief description of all BASIC statements:

Statement Description

BEEP

BREAK

CALL
CLEAR

CLOSE
CLS
COLOR

CONT
DATA

DEFDBL
DEFFN

DEFINT
DEFSNG
DEFSTR
DIM
EDIT
END
ERL

ERR
ERROR
FIELD
FILES

FOR/NEXT
GET
GOSUB

GOTO

IF/THEN/ELSE

INPUT

produces a sound from the computer
speaker.
enables, disables, or suspends restart
trapping
calls an assembly-language subroutine.
sets all numeric variables to zero, all
string variables to null, and closes all
files.
closes access to a file.
clears the screen.
toggles display background between nor­
mal and reverse video
continues program execution.
stores data in your program so that you
can access it with a READ statement.
defines variables as double precision.
defines a function according to your
specifications.
defines variables as integers.
defines variables as single precision.
defines variables as strings.
defines the dimensions of an array.
edits program lines.
ends a program.
returns the number of the line in which
an error occurred.
returns an error code after an error.
simulates the specified error.
organizes a direct access buffer.
displays names of files in RAM or on a
disk.
establishes a program loop.
gets a record from a direct access file.
transfers program control to a
subroutine.
transfers program control to the specified
line.
evaluates an expression and performs an
operation if conditions are met.
accepts data from the keyboard.

61

Chapter9

Statement

INPUT#

INPUT$

KEY

KEY/Trap
KILL
LET

LIBRARY

LINE/Graphics
LINE INPUT
LINE INPUT#

LIST
LLIST
LOAD
LOCATE
LPRINT
LPRINT USING

LSET

MERGE

MID$
NAME
NEW
ON BREAK GOSUB

ON ERROR GOTO
ON/GOSUB

ON/GOTO

ON KEY() GOSUB

Description

accepts data from a sequential access
device or file.
accepts data from the keyboard or a
sequential access file.
assigns or displays the current function­
key soft values.
enables key-event trapping.
deletes a file.
assigns a value to a variable. (The key­
word LET may be omitted.)
enables or disables libraries of machine
language subroutines.
draws a line on the display.
accepts an entire line from the keyboard.
accepts an entire line from a sequential
access file.
lists a program to the display or printer.
prints a program on the printer.
loads a program.
positions the cursor on the screen.
prints data at the printer.
prints data at the printer in a specified
format.
moves data (and left-justifies it) to a field
in a•direct access file buffer.
merges a program with a resident
program.
replaces a portion of a string.
renames a file.
erases a program from RAM.
branches to a subroutine when the I BREAK I
key is pressed.
sets up an error-trapping routine.
evaluates an expression and branches to
a subroutine.
evaluates an expression and branches to
another program line.
branches to a subroutine when a specific
key is pressed.

ON RESTART GOSUB branches to a subroutine when BASIC is
restarted after QUIT or mJ or [ill] halts
operations.

ON TIMER() GOSUB branches to a subroutine when timer
equals the specified number.

OPEN opens a file.

62

Statement

PRESET/Graphics

PRINT
PRINT USING

PRINT#
PRINT# USING

PSET/Graphics

PUT
QUIT

RANDOMIZE
READ

REM
RENUM
RESET
RESTART

RESTORE
RESUME

RETURN

RSET

RUN
SAVE
SOUND

STOP
SYSTEM
TIMER/Trap
TROFF
TRON
WRITE
WRITE#

Introductwn to Basic Keywords

Description

draws a point in color at a specified posi­
tion on the screen.
lists data to the display.
lists data to the display in a specific
format.
writes data to a sequential access file.
writes data to a sequential access file
using the specified format.
draws a point on the screen at a specified
position.
puts a record into a direct access file.
suspends BASIC and activates another
application.
reseeds the random number generator.
reads data stored in the DATA statement
and assigns it to a variable.
inserts a remark line in a program.
renumbers a program.
closes all open files.
enables, disables, or suspends restart
trapping.
restores the DATA pointer.
resumes program execution after an
error-handling routine.
returns from a subroutine to the calling
program.
moves data (and right-justifies it) to a
field in a direct access file buffer.
executes a program.
saves a program.
generates a specific tone for a specified
length of time.
stops program execution.
returns to main menu.
controls timer event trapping.
turns off the tracer.
turns on the tracer.
prints data on the display.
writes data to a sequential file.

63

Chapter9

Functions
A function is a built-in subroutine. You may only use it as par
of a statement. Most BASIC functions return numeric or strini
data.

Function

ABS
ASC
ATN
CDBL
CHR$
CINT
cos
CSNG
CSRLIN

CVD

CVI

CVS

DATE$
EOF
EXP

FIX
FRE

HEX$

INKEY$
INT
LEFT$
LEN
LOC
LOF

LOG

LPOS

MID$

64

Description

returns the absolute value of a number
returns the ASCII code of a character.
returns the arctangent of a number.
converts a number to double precision.
returns the character of an ASCII code.
co!lverts a number to an integer.
returns the cosine of a number.
converts a number to single precision.
returns the current row position of the
cursor.
restores data from a direct access file to
double precision.
restores data from a direct access file to
integer.
restores data from a direct access file to
single precision.
sets the date or returns the current date.
checks for end-of-file.
returns the natural exponent of a
number.
truncates to a whole number.
returns the number of bytes in memory
not being used.
converts a decimal value to a hexadeci­
mal string.
returns the keyboard character.
returns the integer value of a number.
returns the left portion of a string.
returns the length of the string.
returns the current file record number.
returns the total number of bytes in a
file.
returns the natural logarithm of a
number.
returns the position of the print head in
the printer buffer.
returns the midportion of a string.

Function

MKD$

MK!$

MKS$

OCT$

POINT

POS

RIGHT$
RND
SGN
SIN
SPC
SQR
STR$
TAB

TAN
TIME$
VAL

Introductwn to Basic Keywords

Description

converts a double precision value to a
string for writing it to a direct access
file.
converts an integer value to a string for
writing it to a direct access file.
converts a single precision number to a
string for writing it to a direct access
file.
converts a decimal value to an octal
string.
returns either the color of a point or cur­
rent coordinates.
returns the cursor column position on the
display.
returns the right portion of a string.
returns a random number.
determines the sign of a number.
returns the sine of a number.
prints spaces to the display.
returns the square root of a number.
converts a number to a string.
positions the video cursor or the print
head at a specified position.
returns the tangent of a number.
sets the time or returns the current time.
returns the numeric value of a string.

65

Chapter 10

BASIC KEYWORDS

ABS Function

ABS(number)

Returns the absolute value of number.

The absolute value of a number is the value without regard to
its sign. Absolute values are always positive or zero.

Example
PRINT ABSC-66)

prints the absolute value of -66 which is 66.

X • ABSCY>

computes the absolute value of Y and assigns it to X.

Sample Program

100 INPUT "WHAT'S THE TEMPERATURE OUTSIDE?
(DEGREES F>";TEMP
110 IF TEMP< 0 THEN PRINT "THAT'S" ABSCTEMP>
"BELOW ZERO! BRR!": END
120 IF TEMP• 0 THEN PRINT "ZERO PEGREES! MITE
COLD!": END
130 PRINT TEMP "DEGREES ABOVE ZERO! BALMY!": END

67

ASC Function

ASC(string)

Returns the ASCII code for the first character of striTtjJ.

ASC returns the value as a decimal number. If strlTtjJ is null, an
"Illegal function call" error occurs.

Example
PRINT ASC<"A">

prints 65, the ASCH code for A.

Sample Program
\bu can use ASC to be sure a p-ogram is receiving proper input.
Suppose you want to write a program that requires the user to
input hexadecimal digits (0-9, A-F). To be sure that only those
characters are inJ,>Ut, and all. other characters are excluded, you
can insert the following routine.

68

111 INPUT "ENTER A HEXADECIMAL VALUE"1HS
111 A• ASC<HS> 'get ASCII code
121 IF A>47 AND A<S8 OR A>64 AND A<71 THEN PRINT
11 01<. 11 , GOTO ue
131 PRINT "VALUE HOT OK.": GOTO 118

BASIC Keywords

ATN Function

ATN(number)

Returns the arctangent of number.

ATN returns the angle (in radians) whose tangent is number.
Number must be given in radians.

BASIC always returns the result as a double precision number.

To convert this value to degrees, multiply the number returned
by ATN by 180/pi.

Example
PRINT ATNC7)

prints the arctangent of 7 which is 1.4288992721907

X = ATNCY/3) * 57.29578

computes the arctangent of Y/3 in degrees and assigns the value
to X.

69

Chapter 10

BEEP

BEEP

Sounds the speaker.

Statement

The BEEP statement sounds the ASCII bell character.

Example
20 IF X < 20 THEN BEEP

This executes a beep when Xis less than 20.

70

BASIC Keywords

BREAK ON/OFF/STOP Statement

BREAK ON Enables restart trapping
BREAK OFF Disables restart trapping
BREAK STOP Suspends restart trapping

These statements are used in conjunction with the ON BREAK
GOSUB statement. (See the description of that statement for
more information.)

71

Chapter 10

CALL Statement

CALL routine name [(argument list)]

Passes program control to an external subroutine located in one
of the active library files.

routine name is the name of the library subroutine to which you
wish to pass control. If more than one LIBRARY command has
been issued, libraries are searched in reverse of the order in
which they were opened.

argument list is an optional list of variables or constants, sepa­
rated by commas, that are passed to the subroutine. (See Chap­
ter 8 for a complete description of how to use this command.)

72

CDBL

CDBL(number)

Converts X to a double precision number.

Example
10 LET PI = 22/7
20 PRINT CSNG CPI>, CDBL CPI)

yields

3.14286 3.1428571428571

BASIC Keywords

Function

73

Chapter 10

CHR$

CHR$(code)

Function

Returns a string whose one character is ASCII character (code).

CHR$ is commonly used to send a special character to the
screen or printer. Fbr instance, a form feed (CHR$(12)) could be
sent to clear the screen and return the cursor to the home
position.

Example
PR INT CHR$C66)

yields

B

74

BASIC Keywords

CINT Function

CINT(number)

Converts (number) to an integer by rounding the fractional
portion.

If (number) is not in the range - 32768 to 32767, an "Overflow"
error occurs.

Example
PRINT CINTC45.67)

yields

46

75

Chapter 10

CLEAR

CLEAR

Statement

Sets all numeric variables to zero, all string variables to null,
and closes all files.

The CLEAR statement performs the following actions:

76

Closes all files
Resets numeric variables and arrays to zero
Resets the stack and string space
Resets string variables and arrays to null
Resets all DEF FN and DEF SNG/DBL/STR statements

BASIC Keywords

CLOSE Statement

CLOSE [[#]file number[,[#]file number ...]]

Concludes 1/0 to a file. The CLOSE statement complements the
OPEN statement.

Fi/,e number is the number under which the file was opened. A
CLOSE with no arguments closes all open files.

The association of a particular file and a file number terminates
after a CLOSE statement is executed. The file may then be
reopened using the same or a different file number. Once a file is
closed, that file's number may be used for any unopened file.

A CLOSE for a sequential output file writes the final buffer of
output.

The SYSTEM, CLEAR, and END statements and the NEW and
RESET commands always close all files automatically.

Example
CLOSE #1 , #2

77

Chapter 10

CLS

CLS

Erases contents of entire current screen.

Example
10 CLS 'Clears the screen

78

Statement

BASIC Keywords

COLOR Statement

COLOR [parameter]

Enables and disables reverse video mode.

If the optional numeric parameter is a non-zero value, reverse
video is enabled. If parameter is zero or not present, reverse video
is disabled.

79

Chapter 10

CONT

CONT

Resumes program execution.

Statement

You may only use CONT if the program has been stopped by the
I BREAK I key or the execution of a STOP or an END statement.

CONT is primarily a debugging tool. During a break or stop in
execution, you may examine variable values (using PRINT) or
change these values. Then type CONT I ENTER J to continue execu­
tion with the new variable values.

You cannot use CONT after editing your program lines or other­
wise changing your program. CONT is also invalid after execu­
tion has ended normally.

See the STOP statement to terminate execution and the GOTO
statement to begin execution at a specific line number.

Example
10 INPUT "ENTER 3 NUMBERS a,b,c";A, 8, C
20 K•A"2
30 L=B"3/.26
40 STOP
50 M=C+40*K+100: PRINT M

Run this program. BASIC prompts for 3 numbers. Type:

1 , 2 , 3 I ENTER I

The computer displays "Break in 40." You can now enter
a BASIC statement as a command. Fbr example:

PR I NT L I ENTER I

displays 30.76923. You can also change the value of A, B, or C.
For example, to change the value of C, type:

C = 4

Now type:

CONT I ENTER I
and BASIC displays 144.

80

BASIC Keywords

cos Function

COS(number)

Returns the cosine of number.

COS returns the cosine of the angle represented by number.

Number must be given in radians. If number is in degrees, use
COS(number * pi/180) to convert number to radians.

BASIC always returns the result as a double precision number.

Examples
PRINT COSCS.8> - COSC85 * .42>

prints the arithmetic (not trigonometric) difference of the 2
cosines.

Y = coscx * .0174533)

stores in Y the cosine of X, if X is an angle in degrees.

81

Chapter 10

CSNG

CSNG(number)

To convert (number) to a single precision number.

10 A#= 975.3421115#
20 PRINT A#, CSNGCA#)

yields

975.3421115 975.342

82

Function

CSRLIN

CSRLIN

Returns the current row position of the cursor.

BASIC Keywords

Function

See the POS function to return the current column position and
the LOCATE statement to set the row and column positions.

Example
10 PRINT "This is Line":
20 PRINT CSRLIN

83

Chapter 10

CVD, CVI, CVS

CVD(B- byte string)
CVI(2-byte string)
CVS(4-byte string)

Converts string values to numeric values.

Function

Numeric values that are read in from a direct access file must be
converted from strings back into numbers. CVI converts a 2-byte
string to an integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string to a double
precision number.

CVD, CVI, and CVS are the inverse of MKD$, MKI$, and
MKS$, respectively.

Examples
A#• CVDCGROSSPAY$)

assigns the numeric value of GROSSPAY$ to the double precision
variable A#.

84

70 FIELD #1,4 AS N$, 12 AS B$, •••
80 GET #1
90 Y•CVS CN$)

BASIC Keywords

DATA Statement

DATA constant [,constant, ...]

Stores numeric and string constants to be accessed by a READ
statement.

This statement may contain as many constants (separated by
commas) as can fit on a line (a maximum of 254 characters
including the word DATA, commas, and spaces).

DATA statements may appear anywhere it is convenient in a pro­
gram. BASIC reads DATA statements sequentially, starting with
the first constant in the first DATA statement and ending with
the last item in the last DATA statement.

String constants containing delimiters, such as leading or trail­
ing blanks, colons, or commas, must be enclosed in double quota­
tion marks when used in DATA statements.

The data types in a DATA statement must match with the vari­
able types in the corresponding READ statement, otherwise,
BASIC displays a "Syntax error."

Note that expressions are not allowed in a DATA statement.

To reread DATA statements from the beginning, use a
RESTORE statement before the next READ statement.

Examples
DATA NEW YORK, CHICAGO, LOS ANGELES,
PHILADELPHIA, DETROIT

stores 5 string data items. Quotation marks are not needed since
the strings contain no delimiters and the leading blanks are not
significant.

DATA 2.72, 3.14, 0.01745, 57.29578

stores 4 numeric data items.

DATA "SMITH, T.H.",38, "THORN, J.R.",41

stores both types of constants. Quotation marks are required
around the first and third items because they contain commas.

85

Chapter 10

Sample Program
10 PRINT "CITY", "STATE", "ZIP"
20 READ C$,S$,Z
30 DATA "DENVER,", COLORADO, 80211
40 PRINT C$,S$,Z

This program reads string and numeric data from the DATA
statement in Line 30.

86

BASIC Keywords

DATE$

DATE$[= string]

Sets the date or retrieves the current date.

Function

String is a literal, enclosed in quotation marks, that sets the
current date by assigning a value to DATE$. If you omit string,
BASIC retrieves the current date.

Setting the Date

You may use either a slash or a hyphen to separate the month,
day, and year. You may use any of the following forms to set the
current date:

mm!ddlyy
mm-dd-yy

mmlddlyyyy
mm-dd-yyyy

The month (mm) may be any number 01-12.
The day (dd) may be any number 01-31.
The year (yy or yyyy) may be 01-99 or 1980-2099.

You may omit leading zeroes for the month and day. If you only
supply 2 digits for the year, BASIC precedes these digits with
19.

Retrieving the Date

Regardless of the form you use to set the date, BASIC retrieves
the date in the following form:

mm-dd-yyyy

The month and day are always returned as 2 digits, BASIC
inserts zeroes as necessary.

87

Chapter 10

Examples
DATE$• "9/S/84"
DATE$• "9/S/1984"
DATE$• "9-S-84"
DATE$• "9-S-1984"

All the above set the current date as 09-06-1984.

PR INT DATE$

prints the current system date.

CURDATE$ • DATE$

assigns the value of the current date to the variable
CURDATE$.

88

BASIC Keywords

DEFDBL/INT/SNG/STR Statement

DEFDBL letter[,letter, ...]
DEFINT letter[,letter, ...]
DEFSNG letter[,letter, ...]
DEFSTR letter[,letter, ...]

Defines any variables beginning with "letter(s) as: double preci­
sion (DBL), integer (INT), single precision (SNG), or string
(STR).

You may specify "letter as a range of letters. For example, A-J.

Remember, a type declaration tag always takes precedence over
a DEF statement.

Examples
DEFDBL L-P

classifies all variables beginning with the letters L through P as
double precision variables.

DEFSTR A

classifies all variables beginning with the letter A as string
variables.

DEFINT I-N, W,Z

classifies all variables beginning with the letters I through N,
W, and Z as integer variables.

DEFSNG I, Q-T

classifies all variables beginning with the letters I or Q through
T as single precision variables.

89

Chapter 10

DEFFN Statemen1

DEF FN name [(argument list)] = expresswn

Defines name as a function according to the expressi.on.

Name must be a valid variable name. The type of variable yot
use determines the type of value the function returns. For exam­
ple, if you use a single precision variable, the function returm
single precision values. This name, preceded by FN, is the namE
of the function when you call it.

Argument list is a list of dummy variables used in expressi.on
They are replaced on a one-to-one basis with the variables 01

values given when the function is called. If you enter several
variables, separate them with commas. These variables do not
affect variables in your program with the same name.

Expressi.on defines the operation to be performed. A variable
used in a function definition may or may not appear in argumeru
list. If it does, BASIC uses the value given when the function iE
called to perform the function. Otherwise, it uses the current
value of the variable.

Once you define and name a function (by using this statement),
you can use it as you would any BASIC function.

Examples
DEF FNR = RND C1>*89+1O

defines a function FNR to return a random value between UJ
and 99. Notice that the function can be defined with no
arguments.

210 DEF FNW# CA#,B#)=CA#-B#)*(A#-8#)
220 l# = 345.998
230 J# • 150.667
240 T = FNW#(l#,J#)
250 PR INT T

defines function FNW# in Line 210 using dummy variables A#
and B#. Line 240 calls the function and replaces variables A#
and B# with variables I# and J# which are used in the
program.

90

BASIC Keywords

DIM Statement

DIM array(dimenswn)[,array(dimenswn), ...]

Sets aside storage for arrays with the dimensions you specify.

Array is the variable name of the array. It may be a string, inte­
ger, single precision, or double precision variable.

Dimenswn is 1 or more integer numbers separated by commas
that define the dimensions of the array. The lowest element in a
dimension is always zero.

When you execute the DIM statement, BASIC reserves space in
memory for each element of the array. Each element is initially
set to zero for numeric arrays or null for string arrays.

If you do not dimension an array, the maximum number of ele­
ments it can have is 11 (0-10).

Remember that arrays are completely independent of variables
that have the same name; that is MN and MN() are unique.

Fbr more information on arrays, see Chapter 6.

Theoretically, the maximum number of dimensions allowed in a
DIM statement is 255. In reality, however, that number would be
impossible, since the name and punctuation are also counted as
spaces on the line, and the line itself has a limit of 255
characters.

If the default dimension (10) has already been established for an
array variable, and that variable is later encountered in a DIM
statement, an "Array already dimensioned" error results. There­
fore, it is good programming practice to put the required DIM
statements at the beginning of a program, outside of any pro­
cessing loops.

Example
10 DIM AC20)
20 FOR I•0 TO 20
30 READ ACI>
40 NEXT I

91

Chap'terlO

EDIT

EDIT line

Statement

Enters the Edit mode. BASIC displays line for editing.

You can substitute a period (.) for line to indicate the current
line number.

See Chapter 4, "General Information," for more information on
editing and special keys.

Examples
EDIT 100

enters Edit mode at Line 100.

EDIT •

enters Edit mode at current line.

92

END

END

BASIC Keywords

Statement

Ends program execution, closes all files, and returns to com­
mand level.

You may place this statement anywhere in the program. It forces
execution to end at some point other than the last sequential
line.

An END statement at the end of a program is optional.

Sample Program
40 INPUT S1, S2
50 GDSUB 100
55 PRINT H
60 END
100 H•SQRCS1*S1 + S2*S2>
110 RETURN

Line 60 prevents program control from continuing through the
subroutine. Line 100 may be accessed only by a branching state­
ment, such as GOSUB in Line 50.

93

Chapter 10

EOF Function

EOF(file number)

Detects the end of a file.

Fil.e number is the number assigned to the file when you opened
it. It must access an open file.

This function checks to see whether all characters up to the end­
of-file marker have been accessed so that you can avoid "Input
past end" errors during sequential input.

When used with sequential access files, EOF returns 0 (false),
when the end-of-file record has not been read yet, and -1 (true),
when it has been read.

When used with direct access files, EOF returns -1 (true) if the
last executed GET statement was unable to read an entire record
because of an attempt to read beyond the physical end of the file.

Example

94

10 OPEN "DATA" FOR OUTPUT AS 1
20 C•0
30 IF EOFC1> THEN 100
40 INPUT #1 ,MCC)
50 C=C+1 :GOTO 30

ERL

ERL

BASIC Keywords

Statement

Returns the number of the line in which an error has occurred.

This function is primarily used inside an error-handling routine.
If no error has occurred, ERL returns a 0. If a statement entered
at BASIC's prompt causes the error, ERL returns line number
65535 (the largest number that can be represented in 2 bytes).

Examples
PRINT ERL

prints the line number of the error.

E = ERL

stores the error's line number in variable E.

Sample Program

See ERROR.

95

Chapter 10

ERR

ERR

Statement

Returns the error number if an error has occurred.

ERR is only meaningful inside an error-handling routine ac­
cessed by ON ERROR GOTO.

See Chapter 12 for a list of error numbers and codes.

Example
IF ERR• 7 THEN 1000 ELSE 2000

branches to Line 1000 if the error is an "Out of memory" error
(code 7); if it is any other error, control goes to Line 2000.

Sample Program

See ERROR.

96

Note: If you exit a BASIC program without using an
error-trapping routine and an error occurs, you may
use the PRINT ERR command to re-:.urn the error
number.

ERROR

ERROR code

BASIC Keywords

Statement

Simulates a specified error during program execution.

Code is an integer expression in the range 0 to 255 specifying
one of BASIC's error codes.

This statement is usellttainly for testing an ON ERROR GOTO
routine. When the computer encounters an ERROR statement, it
proceeds as if the error corresponding to that code has occurred.
(Refer to Chapter 12 for a listing of error codes and their
meanings.)

Example
ERROR 1

causes a ''NEXT without FOR" error (Code 1) when BASIC
reaches this line.

Sample Program
118 ON ERROR GOTO 488
128 INPUT "WHAT IS YOUR BET"; B
138 IF B>5088 THEN ERROR 21 ELSE GOTO 428
400 IF ERR• 21 THEN PRINT "HOUSE LIMIT IS
$5088 ..
410 IF ERL• 130 THEN RESUME 588
420 S • S+B
430 GOTO 120
580 PRINT "THE TOTAL AMOUNT OF YOUR BET IS .. ;S
518 END

This program receives and totals bets until one of them exceeds
the house limit.

Chapter 10

EXP Function

EXP(number)

Returns the natural exponent of number, that is, e (base of natu­
ral logarithms) to the power of number.

Number must be less than or equal to 145.06286085

This functions is the inverse of the :IIG function; therefore,
number= EXP(LOG(number)).

BASIC always returns the result as a double precision number.

Example
PRINT EXPC-2>

prints the exponential value .13533528323661.

Sample Program
310 INPUT "NUMBER"; N
320 PRINT "E RAISED TD THE"N"POWER IS" EXPCN>

98

BASIC Keywords

FIELD Statement

FIELD [#]file number,field width AS string
variabk ...

Allocates space for variables in a direct access file buffer.

Before a GET statement or PUT statement can be executed, a
FIELD statement must be executed to format the direct access
file buffer.

File number is the number under which you opened the file. Fiekl
width is the number of characters to be allocated to string
variable.

The total number of bytes allocated in a FIELD statement must
not exceed the record length that was specified when the file was
opened. Otherwise, a "Field overflow" error occurs. (The default
record length is 128 bytes.)

Any number of FIELD statements may be executed for the same
file. All FIELD statements that are executed remain in effect at
the same time.

Note: Do not use a fiekled variable name in an INPUT
or LET statement. Once a variable name is fielded, it
points to the correct place in the direct access file
buffer. If a subsequent INPUT or LET statement with
that variable name is executed, the variable no longer
refers to the direct access file record buffer, but to the
variables stored in string space.

Example 1
FIELD 1,20 AS NS,1111 AS ID$,40 AS ADD$

Allocates the first 20 bytes in the file buffer to the string vari­
able N$, the next 10 bytes to ID$, and the next 40 to ADD$.
FIELD does not place any data in the file buffer. (See also GET,
LSET, and RSET Statements.)

99

Chapter 10

Example 2
10 OPEN "PHONELST" AS 1 LEN•35
15 FIELD #1 ,2 AS RECNBRS,33 AS DUMMY$
20 FIELD #1 ,25 AS NAMESS,10 AS PHONENBR$
25 GET#1
30 TOTAL•CVICRECNBR$)
35 FOR 1•2 TO TOTAL
40 GET #1, I
45 PRINT NAMES$, PHONENBRS
50 NEXT I

Illustrates a multiple defined FIELD statement. In statement 15,
the 35-byte field is defined for the first record to keep track of
the number of records in the file. In the next loop of statements
(35-50), statement 20 defines the field for individual names and
phone numbers.

Example 3
10 FOR LOOP¾•0 TO 7
20 FIELD #1,CLOOP¾*16) AS DFFSEH,16 AS

AHLDDP¾>
30 NEXT LOOP¾

Shows the construction of a FIELD statement using an array of
elements of equal size. The result is equivalent to the single
declaration:

100

FIELD #1,16 AS A$C0),16 AS A$C1), ... ,16 AS
A$C6),16 AS A$C7>

BASIC Keywords

Example 4
10 DIM SIZE% (4%): REM ARRAY OF FIELD SIZES
20 FOR LOOP%=0 TO 4%
30 READ SIZE% (LOOP%)
40 NEXT LOOP%
50 DATA 9,10,12,21,41

120 DIM A$C4%): REM ARRAY OF FIELDED VARIABLES
130 OFFSET%=0
140 FOR LOOP%•0 TO 4%
150 FIELD #1 ,OFFSET% AS OFFSETS,SIZEX CLOOPX> AS

A$ CLOOPU
160 OFFSETX•OFFSETX+SIZEX CLOOPX>
170 NEXT LOOP%

Creates a field in the same manner as Example 3. However, the
element size varies with each element. The equivalent declara­
tion is:

FIELD #1 ,SIZE%C0) AS A$C0) ,SIZE%C1 > AS A$C1 >, ...
SIZE%C4%) AS A$C4%)

101

Chapter 10

FILES Statement

FILES [fUen.ame]

Prints the names of files residing in RAM or on disk.

If fikname is omitted, all the files in RAM are listed. filename is
a string formula which may contain question marks (?) or aster­
isks (*) used as wild cards. A question mark matches any single
character in the filename or extension. An asterisk matches one
or more characters starting at that position. The asterisk is a
shorthand notation for a series of question marks. The asterisk
need not be used in the case where all the files on a drive are
requested, e.g., FILES "A:".

FOR PAGE 99-

Examples
FILES

Shows all files in RAM.

FILES "*.BAS"

Shows all files with extension .BAS.

FILES "TEST?.BAS"

Shows all five-letter files whose names start with "TEST" and
end with the .BAS extension.

102

BASIC Keywords

FIX Function

FlX(number)

Returns the truncated integer of number.

Unlike CINT, FIX does not round the fractional portion of num­
ber when making it an integer. Instead, FIX simply strips the
fractional portion from number so that the resultant value is a
whole number. The result is the same precision as the argument
(except for the fractional portion).

Unlike INT, FIX does not return the next lower number for a
negative number.

FIX is the same as:

SGN(number)*INT(ABS(number)).

See also CINT and INT, which also return integer values.

Examples
PRINT FIX C2.6)

prints 2.

PRINT FIXC-2.6)

prints -2.

103

Chapter 10

FOR/NEXT Statement

FOR variabk = initial value TO final value [STEP
increment]

NEXT [variabk]

Establishes a program loop that allows a series of program state­
ments to be executed a specified number of times.

Variable may be either integer, single precision, or double preci­
sion. Each FOR/NEXT loop must have a unique variable.

Increment is the number BASIC adds to the initial value each
time the loop is executed. If you omit increment, BASIC incre­
ments by 1. If increment is a negative value, BASIC decreases
the initial value each time through the loop. In this case, the fi­
nal value must be less than the initial value.

BASIC executes the program lines following the FOR statement
until it encounters a NEXT. At this point, it increases initial
value by the STEP increment. If initial value is less than or equal
to final value, BASIC branches back to the line after FOR and
repeats the process. When initial value is greater than final
value, the loop is completed, and BASIC continues with the state­
ment after NEXT.

Note: BASIC skips the body of the loop if initial value
is greater than final value when increment is positive
or if final value is greater than initial value when in­
crement is negative.

Sample Program

BASIC always sets the final value for the loop variable before
setting the initial value. For example:

820 I=S
830 FOR I • 1 TO I + 5
840 PRINT I;
850 NEXT

executes the loop 10 times, which prints:

1 2 3 4 5 6 7 8 9 10

104

BASIC Keywords

Nested Loops

FOR/NEXT loops may be nested; that is, a FOR/NEXT loop may
be placed within the context of another FOR/NEXT loop.

The NEXT statement for the inside loop must appear before the
NEXT for the outside loop. If nested loops have the same end
point, a single NEXT statement may be used for all of them.

Sample Program
880 FOR I = 1 TO 3
890 PRINT "OUTER LOOP"
900 FOR J = 1 TO 2
910 PRINT" INNER LOOP"
920 NEXT J
930 NEXT I

This program performs 3 outer loops and 2 inner loops within
each of the outer loops. BASIC prints the following:

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

OUTER LOOP
INNER LOOP
INNER LOOP

By listing the counter variable, you can use the NEXT state­
ment to close nested loops. (Be sure not to type the variables out
of order.) For example, delete Line 920 and change 930 to:

930 NEXT J, I

If you omit the variables in nested loops, BASIC matches the
most recent FOR statement.

105

Chapter 10

FRE Function

FRE(dummy argument)

Returns the number of bytes in memory not being used by
BASIC.

Dummy argument can be any string or numeric constant or vari­
able. If you specify a numeric argument, BASIC returns the
amount of memory available. If you specify a string argument,
BASIC compresses the data before returning the amount of
memory available. This frees unused memory that was once used
for strings.

BASIC automatically compresses data if it runs out of work­
space. This may take a few seconds.

Examples
PRINT FREC44>

prints the amount of memory left.

106

BASIC Keywords

GET Statement

GET [#]fik number[,record number]

Reads a record from a random file into a random buffer.

File number is the number under which the file was OPENed. If
record number is omitted, the next record (after the last GET) is
read into the buffer. The largest possible record number is
16,777,215.

After a GET statement has been executed, INPUT# and LINE
INPUT# may be executed to read characters from the random
file buffer. The EOF function may be used after a GET state­
ment to see if that GET was beyond the end of file marker.

Example
GET #1,75

107

Chapter 10

GOSUB

GOSUB line

Statement

Branches to the subroutine beginning at the specified line num­
ber.

Every subroutine must end with a RETURN. You can call a sub­
routine as many times as you want. When BASIC encounters a
RETURN statement in the subroutine, it returns to the state­
ment that follows the GOSUB.

GOSUB is similar to GOTO in that it may be preceded by a test
statement.

Example
GOSUB 1000

branches to the subroutine at Line 1000.

Sample Program
260 GOSUB 280
270 PRINT "BACK FROM SUBROUTINE": END
280 PR I NT "EXECUTING THE SUBROUTINE"
290 RETURN

transfers control from Line 260 to the subroutine beginning at
Line 280. Line 290 instructs the computer to return to the
statement immediately following GOSUB.

108

BASIC Keywords

GOTO Statement

GOTO line

Branches to the specified line.

When used alone, GOTO results in an unconditional branch.
However, test statements, such as IF/THEN, may precede the
GOTO to effect a conditional branch. Note that the GOTO is op­
tional in IF/THEN statements. For example:

IF X=0 THEN 360 ELSE 200

BASIC branches to Line 360 if X equals 0. If not, BASIC
branches to Line 200

You can use GOTO in the command mode as an alternative to
RUN. This lets you pass values assigned as a command to vari­
ables used in the program.

Example
GOTO 100

BASIC transfers control to Line 100.

Sample Program
10 READ R
20 IF R = 13 THEN 80
30 PRINT "R=";R
40 A=3.14•RA2
50 PRINT "AREA =";A
60 GOTO 10
70 DATA 5, 7, 12, 13
80 END

Line 10 reads each of the data items in Line 70; Line 60 returns
program control to Line 10. This enables BASIC to calculate the
area for each of the data items until it reaches item 13.

109

Chapter 10

HEX$

HEX$(number)

Calculates the hexadecimal value of number.

Function

HEX$ returns a string that represents the hexadecimal value of
number. Since the value returned is like any other string, you
cannot use it in a numeric expression. You cannot add hex
strings; however, you can concatenate them.

Examples
PRINT HEX$C30), HEX$CS0>, HEX$C90>

prints the following strings lE, 32, and 5A.

Y$ • HEXHX/16)

Y$ is the hexadecimal string representing the integer quotient
X/16.

110

BASIC Keywords

IF/THEN/ELSE Statement

IF expresswn THEN statement(s)[ELSE statement(s)]

Tests a conditional expression and makes a decision regarding
program flow.

Expresswn is any numeric or string expression, usually making
logical or relational comparisons.

Statement can be 1 or more valid BASIG statements. If there is
more than 1 statement, they must be separated by colons. You
can also specify a line number for BASIC to branch as a
statement.

If expresswn is true, BASIC executes the THEN statement. If
expresswn is false, BASIC executes the matching ELSE statement
or the next program line.

You can also use IF/THEN to test the numeric value of a vari­
able. If the variable contains a 0, the expression is true; other­
wise, the expression is false.

Examples
IF X > 127 THEN PRINT "OUT OF RANGE" : END

passes control to PRINT and, then to END if X is greater than
127. If X is not greater than 127, BASIC executes the next line
in the program, skipping the PRINT and END statements.

IF A < 8 THEN PR INT "A < 8 11 ELSE PR INT "8 < = A"

tests the first expression. If it is true, BASIC prints A < B.
Otherwise, BASIC jumps to the ELSE statement and prints
B <= A.

IF X > 0 ANDY<> 0 THEN Y • X + 180

assigns the value X + 180 to Y if both expressions are true.
Otherwise, BASIC executes the next program line, skipping the
THEN clause.

IF A$= "YES" THEN 210 ELSE IF A$• "NO" THEN
400 ELSE 370

branches to Line 210 if A$ is YES. If not, BASIC skips to the
first ELSE, which introduces a new test. If A$ is NO, then

111

Chapter 10

BASIC branches to Line 400. If A$ is any value besides NO or
YES, BASIC branches to Line 370.

Sample Program

IF/THEN/ELSE statements may be nested. However, you must
take care to match up the IFs and ELSEs. (If the statement does
not contain the same number of ELSEs and IFs, each ELSE is
matched with the closest unmatched IF.)

1040 INPUT "ENTER TWO NUMBERS"; A, B
1050 IF A<• B THEN IF A< B THEN PRINT A; ELSE
PRINT" NEITHER"; ELSE PRINT B;
1060 PRINT" IS SMALLER THAN THE OTHER"

This program prints the relationship between the 2 numbers
entered.

112

BASIC Keywords

INKEY$

INKEY$

Function

Returns a keyboard character.

Returns a !-character string from the keyboard without pressing
I ENTER 1. If there are characters already in the keyboard buffer,
INKEY$ returns the first character from the buffer. If no key is
pressed, BASIC returns a null string (length zero). INKEY$
does not echo the character to the display.

INKEY$ is invariably put inside some sort of loop. If not, pro­
gram execution passes through the line containing INKEY$ be­
fore you can press a key.

The I BREAK I and I HOLD I keys are not passed to INKEY$. Also
I ALT II CTRL H DELETE I, which does a system reset, is not passed to
INKEY$.

Note: If your program contains an INKEY$ and you
press a function key, BASIC returns 1 character of the
key assignment at a time. For example, suppose this
statement is executed:
AS = INKEYS

Now suppose you press [ill, which initially has the
value LIST. The first time the statement is executed
A$ equals L, the second time A$ equals I, and so on.
Keep this in mind when writing a BASIC routine to
trap for a certain key. Your routine may not perform
as expected if you accidently press a function key.

Example
10 A$ • INKEY$
20 IF A$ • 1111 THEN 10

causes the program to wait for you to press a key.

113

Chapter 10

INPUT Statement

INPUT[;] ["prompt";]variable[,variable, ...]

Accepts data from the keyboard and inputs it into 1 or more
variables. When BASIC encounters this statement, it stops exe­
cution and displays a question mark. This means that the pro­
gram is waiting for you to type something.

Prompt is a string constant that BASIC displays before display­
ing the question mark prompt. Prompt must be enclosed in quo­
tation marks, and follow the keyword INPUT. If, instead of a
semicolon, you type a comma after prompt, BASIC suppresses the
question mark when printing the prompt.

Variabk may be 1 or more string or numeric variables to receive
the input. If you specify more than 1 variable, separate them by
commas.

If INPUT is immediately followed by a semicolon (;), BASIC does
not echo the I ENTER I key when you press it as part of a response.

When typing multiple pieces of data on 1 line, separate the data
items with a comma. The number of data items you supply must
be the same as the number of variables you specify. - -
Responding to INPUT with too many items or with the wrong
type of value (including numeric type) causes BASIC to print the
message "?Redo from start." No values are assigned until you
provide an acceptable response.

Examples
INPUT Y%

when BASIC reaches this line, you must type any number and
press I ENTER I before the program can continue.

INPUT SENTENCES

when BASIC reaches this line, you must type in a string. The
string does not have to be enclosed in quotation marks unless it
contains a comma, a colon, or a leading blank.

INPUT "ENTER YOUR NAME, AGE"; NS, A

prints the prompt string on the screen, which helps the user en­
ter the right kind of data.

114

BASIC Keywords

Sample Program
50 INPUT "HOW MUCH DD YOU WEIGH"; X
60 PR INT "ON MARS YOU WOULD WE I GH ABOUT"
CINTCX * .38) "POUNDS."

115

Chapter 10

INPUT# Statement

INPUT# buffer, variable[,variable .. .]

Accepts data from a sequential device or file and stores it in a
program variable.

Buffer is the number assigned to the file when you opened it.

Variable is any string or numeric variable to contain the
information.

The sequential file may be a disk file, a RAM file, or the key­
board device.

With INPUT#, data is input sequentially. That is, when the file
is opened, a pointer is set to the beginning of the file. The
pointer advances each time data is input. To start reading from
the beginning of the file again, you must close the file buffer and
reopen it.

INPUT# does not care how you place the data in the file-­
whether you use a single PRINT# statement or 10 different
PRINT# statements. INPUT# looks only for the position of the
terminating characters and the end-of-file (EOF) marker.

When inputting data into a variable, BASIC ignores leading
blanks. When the first nonblank character is encountered,
BASIC assumes it has encountered the beginning of the data
item.

The data item ends when BASIC encounters a terminating char­
acter or when a terminating condition occurs. The terminating
characters vary, depending on whether BASIC is inputting to a
numeric or a string variable:

116

Numeric: BASIC ends input when it encounters a carriage
return or a comma.

String: BASIC ends input when it encounters a carriage re­
turn or a comma, unless the first character is a quotation
mark("). If the first character is a question mark, BASIC
ends input when it encounters a second quotation mark.
Thus, a quoted string may not contain a quotation mark as
a character.

Examples
INPUT#1, A,8

BASIC Keywords

sequentially inputs 2 numeric data items from the file opened to
Buffer 1 and places them in A and B.

INPUT#4, A$, 8$, C$

sequentially inputs 3 string data items from the file opened to
Buffer 4 and places them in A$, B$, and C$.

117

Chapter 10

INPUT$ Statement

INPUT$(number [,[#]buffer])

Accepts a string of characters from either the keyboard or a se­
quential access file.

Number is the number of characters to be input. It must be a
value in the range 1 to 255.

Buffer is a buffer that accesses a sequential input file. If you in­
clude buffer, BASIC inputs the string from sequential access file.
If you omit buffer, BASIC inputs the string from the keyboard.
The number sign (#) is optional. It is provided for compatibility
with other BASICs.

When inputting the string from the keyboard, BASIC waits until
the user enters the number of characters specified by number.
You do not need to press I ENTER I to signify end-of-line. The charac­
ter(s) you type are not displayed on the screen. Any character,
except I BREAK I, is accepted for input.

When inputting from a sequential file, BASIC inputs the num­
ber of bytes specified by number from the file assigned to buffer.

Examples
A$ • INPUHCS)

assigns a string of 5 keyboard characters to A$. Program execu­
tion halts until 5 characters are typed at the keyboard.

A$ • INPUHC11,3>

assigns a string of 11 characters to A$. The characters are read
from the file associated with Buffer 3.

Sample Program

In the program below, Line 100 opens a sequential input disk
file (which we assume has been previously created). Line 200 re­
trieves a string of 70 characters from the file and stores them in
T$. Line 300 closes the file.

118

100 OPEN "test.dat" FOR INPUT AS 2
200 T$ • INPUT$C70,2)
300 CLOSE

BASIC Keywords

INT Function

INT(number)

Converts number to the largest integer that is less thl;ln or equal
to number.

Number is not limited to the integer range - 32768 to 32767.

The result has the same precision as number (except for the frac­
tional portion).

Unlike CINT, INT does not round positive numbers. It does,
however, round negative numbers.

Examples
PRINT INTC79.89)

prints 79.

PRINT INT C-12.11>

prints -13.

119

Chapter 10

KEY/Set/Display

KEY number,string

KEYON

KEY OFF
KEY LIST

KEY nu.mber,string

Statement

Assigns or displays function key values.

Number is an integer in the range 1 to 10 that indicates the
function key being defined ([ill- (ill)).

String is the string expression assigned to the key and may con­
tain a maximum of 15 characters.

You can program the function keys on your computer to generate
a specific string of characters. When you press the key, BASIC
displays the string on the screen just as if you had typed every
character. Initially, the function keys have these values:

Fl LIST F7 TRON I ENTER I
F2 RUN I ENTER I FS TROFF I ENTER I
F3 LOAD" F9 FILES"
F4 SAVE" F10 KEY
F5 CONTI ENTER I
F6 EDIT

You also can use the KEY statement to redefine the other func­
tion keys so that BASIC displays the strings you use most often.

You can remove the string from a function key by assigning it a
string length of zero (" "). Fbr example:

KEY 1, 1111

Key [ill no longer has a string assigned to it.

KEYON

KEY ON displays the function key assignment values at the bot­
tom of the screen. The screen shows all 10 of the key assign­
ments. However, the screen shows only the first 6 characters of
the string. When you load BASIC, KEY ON is the initial default
value.

120

BASIC Keywords

KEY OFF

KEY OFF erases the soft key assignments from the bottom line.
The assignments are still active, but the screen does not display
them.

Note: Typing KEY OFF greatly speeds display screen
scrolling.

KEY LIST

KEY LIST displays all 15 characters of all 10 soft key assign­
ments on the screen.

Note: If your program contains an INKEY$ and you
press a function key, BASIC returns 1 character of the
key assignment at a time. For example, suppose this
statement is executed:

A$= INKEY$

Now suppose you press [ill, which initially has the
value LIST. The first time the statement is executed
A$ equals L, the second time A$ equals I, and so on.
Keep this in mind when writing a BASIC routine to
trap for a certain key. Your routine may not perform
as expected if you accidentally press a function key.

121

Chapter 10

KEY/Trap

KEY(number) actwn

Statement

Tums on, turns off, or temporarily halts key trapping for a spec­
ified key.

Actwn may be any of the following:

ON
OFF
STOP

enables key trapping
disables key trapping
temporarily suspends key trapping

Number may be a number in the range 1 to 14, indicating the
number of the key to trap. Function keys use their corresponding
function key number (1-10). The cursor direction key trap num­
bers are:

11
12
13
14

The KEY() ON statement turns on key trapping for a specific
key. BASIC checks after each program statement to see if the
specified key has been pressed. If so, BASIC transfers program
control to the line number specified in the ON KEY() GOSUB
statement. For example:

KEYC3) ON
ON KEYC3> GOSUB 1000

BASIC turns on a trap for [ill. BASIC continues to execute the
other program statements, checking after each statement to see
if [ill has been pressed. When [ill is pressed, BASIC branches to
the subroutine beginning at Line 1000.

KEY() STOP temporarily halts trapping for the specified key. If
the specified key is pressed, BASIC does not transfer program
control to the ON KEY() GOSUB until you tum on key trapping
again with a KEY() ON statement. BASIC remembers that the
key was pressed and branches to the subroutine immediately
after key trapping is turned on again.

122

BASIC Keywords

KEY() OFF turns off key trapping. BASIC does not remember
that the key has been pressed when key trapping is turned on
again.

Note: Key trapping only occurs while BASIC is run­
ning a program.

See ON KEY() GOSUB for more information on key trapping.

Sample Program

See ON KEY() GOSUB.

123

Chapter 10

KILL Statement

KILL filename

Kills (deletes) files from disk or RAM.

You may delete any type of file. However, if the file is currently
open, a "File already open" error occurs. You must close the file
before deleting it.

KILL is used for all types of files: program files, random data
files, and sequential data files. The filename may contain ques­
tion marks (?) or asterisks (*) used as wildcards. A question
mark matches any single character in the filename or extension.
An asterisk matches one or more characters starting at its
position.

Example
200 KILL "DATA1?.DAT"

The position taken by the question mark matches any valid file­
name character. This command kills any file that has a six
character name starting with "DATAl" and has the filename ex­
tension ".DAT". This includes "DATA10.DAT" and
"DATAlZ.DAT".

124

LEFT$

LEFT$(string,number)

BASIC Keywords

Function

Returns the specified number of characters from the left portion
of string.

Number must be an integer in the range 1 to 255. If number is
equal to or greater than the length of the string, BASIC returns
the entire string.

Examples
PRINT LEFTSC"BATTLESHIPS", 6>

prints BA'ITLE.

PRINT LEFT$C"BIG FIERCE DOG", 20)

Since BIG FIERCE DOG is fewer than 20 characters, BASIC
prints the whole phrase.

Sample Program
740 A$• "TIMOTHY"
750 B$ • LEFTCA, 3)
760 PRINT B$; "--THAT'S SHORT FOR"; A$

When you run this program, BASIC prints:

TIM--THAT'S SHORT FOR TIMOTHY

Line 750 gets the 3 left characters of A$ and stores them in B$.
Line 760 prints these 3 characters, a string, and the original
contents of A$.

125

Chapter 10

LEN

LEN(string)

Function

Returns the number of characters in string. Blanks are counted.

Examples
X • LENCSENTENCES>

gets the length of SENTENCE$ and stores it in X.

PRINT LENC"CAMBRIDGE"> + LENC"BERKELEY">

prints 17.

PRINT LENC"ORLAND•, FLORIDA">

prints 16.

126

BASIC Keywords

LET Statement

LET variable = expresswn

Assigns the value of expression to variabl.e.

Variab/,e is a numeric or string variable.

Expression is a numeric or string constant or expression. A
BASIC function can be substituted for expression.

BASIC does not require assignment statements to begin with
LET, but you might want to use LET to be compatible with ver­
sions of BASIC that do require it.

Examples
LET A$= "A ROSE IS A ROSE"
LET B1 = 1 • 23
LET X = X - 21
LET X = SQRCB)

In each case, the variable on the left side of the equals
sign is assigned the value of the constant, expression, or
function on the right side.

Sample Program
550 P • 1001: PRINT "P =" P
560 LET P = 2001: PRINT "NOW P ="P

127

Chapter 10

LIBRARY

LIBRARY library name
LIBRARY CLOSE

Statement

Enables/disables a library's files to be searched for a subroutine
to execute.

Library name is a string expression that indicates the name of a
library file used to search for subroutines specified in the CALL
statement.

The CLOSE option allows the user to remove ALL libraries from
the list of active libraries being searched on CALL statements. It
is not possible to remove specific libraries from the list.

(See Chapter 8 for a more complete description of this command.)

128

BASIC Keywords

LINE/Graphics Statement

LINE [[STEP](xl ,yl)]-[STEP](x2,y2),[color][,B[F]]

Draws a line or a box on the video display.

The STEP option tells BASIC that the (x,y) coordinates are rela­
tive to the last point referenced. If you use STEP with the sec­
ond set of coordinates, the coordinates are relative to the first
set of coordinates.

(xl,yl) specifies the point at which to begin the line. xl is the
horizontal coordinate, and yl is the vertical coordinate. If you
omit (xl,yl) BASIC begins the line at the last point referenced
on the screen.

(x2 ,y2) specifies the point at which to end the line. x2 is the hor­
izontal coordinate and y2 is the vertical coordinate.

Col.or indicates the color of the line (black or white).

If you specify coordinates that are not in the range of the cur­
rent viewport, BASIC displays only that portion of the line that
is within the viewport.

With the B option, BASIC draws a box. The points that you
specify are opposite comers.

If you specify both the B and F options, BASIC draws a box and
fills the box in.

Examples
LINE -(319, 100)

draws a line from the last point referenced to point 319,100.
This is the simplest form of the LINE statement. Note that when
you omit the beginning points you must still include the hyphen.

LINE (0,0)-(319,100)

draws a diagonal line on the display.

LINE (0,100)-(319,100>,1

draws a vertical line across the display in the background color.

LINE C0,0)-C100,100),,B

129

Chapter 10

draws a box in the upper left corner of the display.

LINE Cfll,fll)-C1fllfll,100),1,BF

draws a box on the display and fills it in.

Sample Programs
1 fll CLS
20 LINE -CRND*72fll,RND*128)
30 GO TO 20

Lines 10-30 create a loop that draws random lines on the video
display.

40 FDR X•fll TO 720
Sf/I LINE CX,fll)-CX,120),X AND 1
60 NEXT

Lines 40-60 draw an alternating pattern, turning on and off the
line.

1 fll CLS
20 LINE -CRND*639,RND*199),RND*2,BF
30 GO TO 20

This program draws a random filled boxes across the screen and
d,isplays alternate color patterns.

130

BASIC Keywords

LINE INPUT Statement

LINE INPUT[;]["prompt";] string variabl,e

Accepts an entire line (a maximum of 254 characters) from the
keyboard. LINE INPUT is a convenient way to input string data
without accidental entry of delimiters (commas, quotation marks,
etc.).

Prompt is a string constant enclosed in quotation marks that
BASIC prints before waiting for input.

String variab'le is the variable to receive the input.

The only way to terminate the string input is to press I ENTER 1.
However, if LINE INPUT is immediately followed by a semicolon,
pressing I ENTER I does not echo a carriage return to the display.

Note: You must place a space between LINE and
INPUT.

LINE INPUT is similar to INPUT, except:

• BASIC does not display a ? when waiting for input.
• Only 1 variable can be assigned at a time.
• Commas and quotation marks can be entered in the string

input.
• Leading blanks are not ignored.

Note: A LINE INPUT statement may be aborted by
pressing I SHIFT 11 BREAK 1. BASIC then returns to the com­
mand level. If you are using the interpreter, type
CONT to resume execution at the LINE INPUT.

Examples
LINE INPUT A$

waits for input to A$ without displaying a prompt.

LI NE INPUT "LAST NAME, FIRST NAME? "; NS

displays the message and waits for input.

131

Chapter 10

LINE INPUT# Statement

LINE INPUT#buffer, variabk

Accepts an entire line of data from a sequential file to a string
variabl.e.

Buffer is the number assigned to the file when you opened it.

This statement is useful when you want to read an ASCII format
BASIC program file as data or when you want to read in data
without following the usual restrictions regarding leading char­
acters and terminators.

LINE INPUT# reads everything from the first character up to:

• the end-of-file {control Z)
• the 255th data character
• a carriage return

Other characters encountered-quotation marks, commas, lead­
ing blanks-are included in the string.

Note: You must place a space between LINE and
INPUT#.

Example

If a ASCII format program file looks like this:

10 CLEAR 500
20 OPEN 1, "prog"

then the statement:

LINE INPUT#1, A$

can be used repeatedly to read each program line, one at a time.

132

BASIC Keywords

LIST Statement

LIST startline-endline [,device]

Lists a program in memory to the display.

Startline specifies the first line to be listed. If you omit startline,
BASIC starts with the first line in your program.

Endline specifies the last line to be listed. If you omit endline,
BASIC ends with the last line in your program.

If you omit both startline and endline, BASIC lists the entire
program.

Device may be either SCRN: (screen) or LPTl: (line printer 1). If
you omit device, the lines are listed to the screen.

You can temporarily stop the listing by pressing I PAUSE). Press
any key again to continue the listing.

You can substitute a period (.) for either startline or endline to
indicate the current line number.

Examples
LIST

displays the entire program.

LIST 50-85, "SCRN:"

displays lines in the range 50 to 85 on the screen.

LIST .

displays the last program line that you have entered or edited
and all higher numbered lines on the screen.

LIST -227

displays all lines up to and including 227 on the screen.

LIST 227- ,"LPT1 :"

lists Line 227 and all higher numbered lines to the printer.

133

Chapter 10

LLIST Statement

LLIST startline-endline

Lists program lines in memory to the printer.

Startline specifies the first line to be listed. If you omit startline,
BASIC starts with the first line in your program.

Endline specifies the last line to be listed. If you omit endline,
BASIC ends with the last line in your program.

If you omit both startline and endline, BASIC lists the entire
program.

You can substitute a period (.) for either startline or endline to
indicate the current line number.

LLIST assumes an SO-character-wide printer.

Examples
LLIST

lists the entire program to the printer. To stop this process,
press I PAUSE 1. This causes a temporary halt in the computer's out­
put to the printer. Press any key again to continue printing.

LLIST 68-90

prints lines in the range 68 to 90.

134

BASIC Keywords

LOAD Statement

LOAD fikname [,R]

Loads a BASIC program from disk into memory.

Fflename is a standard file specification used to save the file to
disk.

The R option tells BASIC to run the program. (LOAD with the R
option is equivalent to the command RUN filename.) When you
specify the R option, BASIC leaves all open files open and runs
the program automatically. If you omit the R option, BASIC
wipes out any resident BASIC program, clears all variables, and
closes all open files.

Note: You can press I SHIFT 11 BREAK I at any time during
LOAD, between files, or after a time-out period.
BASIC exits the search and returns to BASIC's
prompt. Previous memory contents remain unchanged.

You can use either of these commands inside programs to allow
program chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a "Direct statement in
file" error occurs.

Example
LOAD "A: prog1. bas"

loads progl .bas from Drive A, and then returns to the command
mode.

135

Chapter 10

LOC

LOC(buffer)

Returns the current record position within a file.

Function

Buffer is the number assigned to the file when you opened it.

You use LOC to determine the current record position, that is,
the number of the last record processed since you opened the file.

When used with direct access files, LOC returns the record
number accessed by the last GET or PUT statement.

When used with sequential files, LOC returns the number of
128-byte blocks that have been read or written.

Example
IF LOCC1)>55 THEN END

Program execution ends, if the current record position is greater
than 55.

Sample Program
1310 A$• "WILLIAM WILSON"
1320 GET 1
1330 IF N$ • A$ THEN PRINT "FOUND IN RECORD"
LOCC1): CLOSE: END
1340 GOTO 1320

This is a portion of a direct access program. Elsewhere the file
has been opened and fielded. N$ is a field variable. If N$
matches A$, the record number in which it was found is printed.

136

BASIC Keywords

LOCATE Statement

LOCATE [row][,[column][,[cursor][]

Positions the cursor on the screen.

Row is a numeric expression in the range 1 to 24 that indicates
the screen row where you want to position the cursor.

Column is a numeric expression that indicates the screen column
where you want to position the cursor. It may be in the range 1
to 40 or 1 to 80, depending on the current screen width.

Cursor indicates whether the cursor is visible or invisible. Set
cursor to 1 for a visible cursor and to 0 for an invisible cursor.

Examples
10 LOCATE 10,20,1
20 PR INT "PR INT I NG STARTED ON ROW 1 0, COLUMN 20"

positions the cursor on Row 10 in Column 20 and prints text.

1 0 LOCATE 11, 1 , 0
20 PRINT "PRINTING STARTED IN ROW 11, COLUMN 1"

positions an invisible cursor in the first position of line 11. The
cursor remains invisible until the LOCATE command is executed
with the cursor option set.

137

Chapter 10

LOF

LOF(buffer)

Returns the length of the file in bytes.

Function

Buffer is the number assigned to the file when you opened it.

Example
Y = LOFC5)

assigns the length of the file in bytes to variable Y.

Sample Programs

During direct access to an existing file, you often need a way to
know when you have read the last valid record. LOF provides a
way:

1540 OPEN "unknown.txt" AS 1 LEN=128
1550 FIELD 1, 128 AS A$
1560 RCNUM% = 1 'START AT BEGINNING OF FILE
1570 RCSIZ% • 128 'SET RECORD SIZE
1580 IF RCNUMX * RCSIZX > LOFC1) GOTO 1640
1590 'CHECK FOR END OF FILE
1600 GET 1, RCNUM% 'RECORD NUM. TO BE ACCESSED
1610 PRINT A$
1620 RCNUMX • RCNUMX + 1 'INCREMENT RECORD NUM
1630 GOTO 1580
1640 CLOSE

If you attempt to GET record numbers beyond the end-of-file,
BASIC gives you an error.

These lines use LOF to determine where to start adding when
you want to add to the end of a file:

1700 RCNUM% • CLOFC1> / RCSIZ¾> + 1
1720 'HIGHEST EXISTING RECORD
1720 PUT 1, RCNUMX 'ADD NEXT RECORD

138

BASIC Keywords

LOG Function

LOG(number)

Returns the natural logarithm of number.

Number must be greater than zero. LOG is the inverse of the
EXP function.

BASIC always returns the result as a double precision number.

Examples
PRINT LDGC3.14159)

prints the value l.1447290411851.

Z = 10 * LOGCP5/P1)

performs the indicated calculation and assigns the value to Z.

Sample Program

This program demonstrates the use of LOG. It utilizes a formula
taken from space communications research.

540 INPUT "DISTANCE SIGNAL MUST TRAVEL (MILES)";
D
550 INPUT "SIGNAL FREQUENCY (GIGAHERTZ>"; F
560 L • 96.58 + (20 * LOGCF)) + (20 * LOGCD>>
570 PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE
IS" L "DECIBELS."

139

Chapter 10

LPOS Function

LPOS(number)

Returns the logical position of the print head within the printer's
buffer.

Number can be 0 or 1 to indicate LPTl:.

LPOS is only useful for checking the position of the print head
after a LPRINT statement that is terminated by a semicolon to
suppress the automatic carriage return. The statement contain­
ing LPOS is not executed until the LPRINT statement is fin­
ished printing.

LPOS does not necessarily give the physical position of the print
head if the printed string contains the ASCII code for a carriage
return. Fbr example, if you are printing a string of 20 characters
and the 10th character is the ASCII code for a carriage return,
the printer advances to the next line after printing the ninth
character before printing the remaining 10 characters. If the
string is terminated by a semicolon to supress the automatic line
feed, the physical location of the print head is at position 10, but
LPOS returns a value of 21 because that is the logical location
of the print head.

Example

You may want to use LPOS to determine whether there is
enough room to continue printing more variables on the same
line.

100 IF LPOSCX)>60 THEN LPRINT

If the printer has printed more than 60 characters, a carriage
return is sent so that the printer skips to the next line.

140

BASIC Keywords

LPRINT Statement

LPRINT [USING format;] data[,data, ...]

Prints data on the printer.

LPRINT assumes a print width of 80 characters.

See PRINT and PRINT USING for more information on format­
ting the output.

Examples
LPRINT CA* 2)/3

prints the value of expression (A* 2)/3 on the printer.

LPRINT TABCS0> "TABBED 50"

moves the printer carriage to tab position 50 and prints
TABBED 50. (Refer to the TAB function.)

LPRINT USING 11 #####,# 11 ; 2.17

sends the formatted value l()bbl'>2.2 to the printer.

141

Chapter 10

LSET Statement

LSET fi,el,d name = data

Moves data to the direct access buffer and places it in fi,e/,d name,
in preparation for a PUT statement.

Fi,e/,d name is a string variable defined in a FIELD statement.

You must have used FIELD to set up buffer fields before using
LSET.

You must convert numeric values to string values before they are
LSET. See MKI$, MKD$, MKS$.

You use LSET to left-justify the variable in the field. If the field
is larger than the variable it is receiving, the field is filled with
blanks on the right. If the variable is larger than the field, char­
acters are truncated on the right. The complement command to
LSET is RSET.

See also Chapter 7, "Files," and OPEN, CLOSE, FIELD, GET,
PUT, and RSET.

Example

Suppose NM$ and AD$ have been defined as field names for a
direct access file buffer. NM$ has a length of 18 characters; AD$
has a length of 25 characters. The statements:

LSET NM$= "JIM CRICKET, JR."
LSET AD$= "2000 EAST PECAN ST."

set the data in the buffer as follows:

JIM~CRICKET,JR.~~~ 2000~EAST~PECAN~ST.~~~~~~

Notice that filler blanks are placed to the right of the data
strings in both cases. If we use RSET statements instead of
LSET, the filler spaces are placed to the left. This is the only
difference between LSET and RSET.

142

MERGE

MERGE fikname

BASIC Keywords

Statement

Loads a BASIC program and merges it with the program cur­
rently in memory.

Filename is a standard file as described in Chapter 1. The file­
name is required. The file must be in ASCII format; that is, it
must have been saved with the A option.

Program lines in filename are inserted into the resident program
in sequential order. For example, suppose that 3 lines from file­
name are numbered 75, 85, and 90, and 3 lines from the resident
program are numbered 70, 80, and 90. When you use MERGE
on the 2 programs, this portion of the merged program is now
numbered 70, 75, 80, 85, 90.

If line numbers on the new program coincide with line numbers
in the resident program, the new program's lines replace the res­
ident program's lines.

MERGE closes all files and clears all variables. Upon completion,
BASIC returns its prompt.

Example

Suppose you have a BASIC program on disk, prog2.bas (saved in
ASCII), that you want to merge with the program you have in
memory:

MERGE "prog2.bas"

merges the 2 programs.

143

Chapter 10

MID$ Statemen·

MID$(oldstring ,start[,length]) = new string

Replaces a portion of ol,dstring with newstring.

01,dstring is the variable name of the string you want to change.

Start is a number specifying the position of the first characte1
you want to change.

Length is a number specifying the number of characters you
want to replace. If length is omitted, all of newstring is used.

Newstring is the string to replace a portion of ol,dstring.

The length of the resultant string is always the same as the
original string. If newstring is shorter than length, the entire
replacement string is used.

Examples:
10 A$• "LINCOLN"
20 MIDCA,3,4) • "12345": PRINT A$

prints Ll1234N.

Replace Line 20 with:

20 MIDCA,5) • "01": PRINT A$

and BASIC prints LINC01N

144

BASIC Keywords

MID$ Function

MID$(string, start [,length])

Returns a substring of a string.

Length is the number of characters in the substring. It must be
in the range 1 to 255.

Start specifies the position in the string from which to get the
substring.

If you omit /,ength or if there are fewer than that number of char­
acters to the right of start position, BASIC returns all characters
to the right of the character at the start position including that
character at start.

If start is greater than number of characters in string, BASIC
returns a null string.

Examples
10 A$= "WEATHERFORD"
20 PRINT MIDCA, 3, 2)

prints AT.

F$ = MIDCA, 3)

puts ATHERFORD into F$.

Sample Program
200 INPUT "AREA CODE AND NUMBER CNNN-NNN-NNNN)";
PH$
210 EX$= MID$CPH$, 5, 3)
220 PRINT "NUMBER IS IN THE " EX$ " EXCHANGE."

The first 3 digits of a local phone number are sometimes called
the exchange of the number. This program looks at a complete
phone number (area code, exchange, last 4 digits) and picks out
the exchange.

145

Chapter 10

MKD$, MKI$, MKS$

MKD$(doubk precision expresswn)
MKl$(integer expresswn)
MKS$(singk preciswn expresswn)

Converts numeric values to string values.

Function

Any numeric value that is placed in a direct file buffer with an
LSET or RSET statement must be converted to a string.

These 3 functions are the inverse of CVD, CVI, and CVS. The
byte values that make up the number are not changed; only 1
byte, the internal data-type specifier, is changed so that numeric
data can be placed in a string variable.

MKD$ returns an 8-byte string; MKI$ returns a 2-byte string;
and MKS$ returns a 4-byte string.

Example
LSET AVG$• MKS$C0.123>

Sample Program
1350 OPEN "test.dat" AS 1 LEN=14
1 360 F" I ELD 1 , 2 AS I 1$, 4 AS I 2$, 8 AS I 3$
1370 LSET 11$ • MKl$C3000>
1380 LSET 12$ • MKS$C3000.1)
1390 LSET 13$ = MKD$C3000.00001)
1400PUT1,1
1410 CLOSE 1

For a program that retrieves the data from test.dat, see CVD/
CVI/CVS.

146

BASIC Keywords

NAME Statement

NAME okl, fil.ename AS new fil.ename

Renames old fUename as new fUename.

With this statement, the data in the file is left unchanged. Old
fi/,ename must exist and new fi/,ename must not exist, otherwise,
an error will result. Both files must also be on the same drive,
or in RAM.

A file in RAM must be renamed in RAM, a file on Drive A must
be renamed on Drive A. The error generated is "FA", if the
above rules are not followed.

Old fi/,ename must be closed before the NAME command is exe­
cuted. There also must be one free file handle.

Example
NAME "ACCTS.BAS" AS "LEDGER.BAS"

In this example, the file that was formerly named ACCTS is now
named LEDGER.

147

Chapter 10

NEW

NEW

Statemen1

Deletes the program currently in memory and clears all vari­
ables. NEW also closes all open files, turns off the trace function
and closes all open libraries.

Example
NEW

148

OCT$

OCT$(number)

Returns the octal value of number.

BASIC Keywords

Function

OCT$ returns a string that represents the octal value of a deci­
mal number. The value returned is like any other string-it can­
not be used in a numeric expression.

Examples
PRINT OCTSC30), OCTSCS0>, OCT$C90)

prints the strings 36, 62, and 132.

VS • OCTSCX/84)

Y$ is a string representation of the integer quotient X/84 to base
8.

149

Chapter 10

ON BREAK GOSUB Statement

ON BREAK GOSUB line number

Line number is the statement line number of the break event
trap handler.

Branches to the specified subroutine when the break key is
typed.

The program uses this trap to detect when the break key is
typed. If you are not using break trapping, the break key stops
any statement being executed and returns to command level.
When you use break trapping, the program controls what hap­
pens (including ignoring the key) when the break key is typed.

The BREAK statement controls whether the trap is detected or
not. The BREAK ON statement enables the GOSUB to occur.

If a BREAK OFF statement has been executed, the GOSUB is
not performed and is not remembered.

If a BREAK STOP statement has been executed, the GOSUB is
not performed but will be performed as soon as a BREAK ON
statement is executed.

When a BREAK GOSUB is executed, an automatic BREAK
STOP is executed so that recursive traps cannot take place. The
RETURN from the subroutine performs an automatic BREAK
ON unless an explicit BREAK OFF is executed inside the
subroutine.

(See also BREAK ON, BREAK OFF, BREAK STOP statements.)

150

BASIC Keywords

ON ERROR GOTO Statement

ON ERROR GOTO line number

Enables error handling and specifies the first line of the error
handling routine.

Once error handling is enabled, all errors detected, including
direct mode errors (e.g., syntax errors), cause a jump to the
specified error handling routine. If line number does not exist,
an "Undefined line" error results.

To disable error handling, execute an ON ERROR GOTO 0. Sub­
sequent errors print an error message and halt execution. An ON
ERROR GOTO 0 statement that appears in an error handling
routine causes BASIC to stop and print the error message for the
error that caused the trap.

Note: If an error occurs during execution of an error
handling routine, that error message is printed and
execution terminates. Error trapping does not occur
within the error handling routine.

Example
10 ON ERROR GOTO 1000

151

Chapter 10

ON/GOSUB Statement

ON n GOSUB line[,line, ...]

Looks at n and transfers program control to the subroutine indi­
cated by the nth line listed.

Fbr example, of n equals 1, BASIC branches to the first line
listed; if n equals 2, BASIC branches to the second line listed.

Line is the subroutine line at which execution begins when
BASIC makes the branch.

N must be a number in the range 0 to 255. If necessary, BASIC
rounds n to an integer before evaluating it. If n is 0 or greater
than the number of line numbers listed, BASIC continues with
the next statement. If n is negative or is greater than 255, an
"Illegal function call" error occurs.

Use the RETURN statement to exit the subroutine.

Example
10 ON Y GOSUB 1000, 2000, 3000

If Y equals 1, BASIC branches to a subroutine, beginning at
Line 1000. If Y equals 2, BASIC branches to a subroutine,
beginning at Line 2000. If Y equals 3, BASIC branches to a
subroutine, beginning at Line 3000.

If Y is outside the range 1 to 3, BASIC either continues with the
next statement or generates an "Illegal function call," as men­
tioned earlier.

Sample Program
430 INPUT "CHOOSE 1 , 2, OR 3" ; I
440 ON I GOSUB 500, 600, 700
450 END
500 PRINT "SUBROUTINE # 1 ": RETURN
600 PRINT "SUBROUTINE #2": RETURN
700 PRINT "SUBROUTINE #3": RETURN

152

BASIC Keywords

ON/GOTO Statement

ON n GOTO line[,line, ...]

Looks at n and transfers program control to the nth line listed.

For example, if n equals 1, BASIC branches to the first line
listed; if n equals 2, BASIC branches to the second line listed.

N must be in the range 1 to 255. If necessary, BASIC rounds n
to an integer before evaluating it. If n is 0 or is greater than the
number of line numbers listed, BASIC continues with the next
statement. If n is negative or is greater than 255, an "Illegal
function call" error occurs.

Example
10 ON MI GOTO 150, 160, 170, 150, 180

tells BASIC to evaluate MI. If MI equals 1, BASIC branches to
Line 150; if MI equals 2, BASIC branches to Line 160; and so
on. If MI is outside of the range 1 to 5, BASIC either continues
with the next statement or generates an Illegal function call, as
mentioned earlier.

Sample Program
5 REM <CAPS> MUST BE ON
10 INPUT "ENTER A,B, or C,";L$
20 L=ASC CU>
30 ON L-64 GOTO 50, 60, 70
40 PRINT "TRY AGAIN":GOTO 10
50 PRINT "YOU TYPED 'A"' END
60 PR I NT "YOU TYPED 'B"' END
70 PRINT "YOU TYPED 'C'" END

153

Chapter 10

ONKEYGOSUB Statement

ON KEY(number) GOSUB line number

Specify the first line number of a subroutine to be executed
when a specified key is pressed.

Number is the number of a function key, direction key, or user­
defined key.

Line number is the number of the first line of a subroutine that
is executed when the specified function or cursor direction key is
pressed.

A line number of zero disables the event trap.

The ON KEY statement is executed only if a KEY ON state­
ment has been executed to enable event trapping. If key trapping
is enabled, and if the line number in the ON KEY statement is
not zero, BASIC checks to see if the specified function, user­
defined or cursor direction key has been pressed. If the key was
pressed, the program branches to a subroutine specified by the
GOSUB statement.

If a KEY OFF statement was executed for the specified key, the
GOSUB is not executed.

If a KEY STOP statement was executed for the specified key,
the GOSUB is not performed, but will be performed as soon as a
KEY ON statement is executed.

When an event trap occurs and a GOSUB is executed, an auto­
matic KEY STOP is executed so that recursive traps cannot
take place. The RETURN from the trapping subroutine auto­
matically performs a KEY ON statement unless an explicit KEY
OFF was executed inside the subroutine.

The RETURN line number form of the RETURN statement may
be used to return to a specific line number from the trapping
subroutine. You should use this type of return with care, how­
ever, because any other GOSUBs, WHILEs, or FORs that were
active at the time of the trap will remain active, and errors such
as "FOR without NEXT" may result.

Event trapping does not take place when BASIC is not executing
a program, and event trapping is automatically disabled when
an error trap occurs.

154

BASIC Keywords

The following rules apply to keys trapped by BASIC:

1. The line printer echo toggle key is processed first. Defining
this key as a user-defined key trap will not prevent characters
from being echoed to the line printer if depressed.

2. Function keys and the cursor direction keys are examined
next. Defining a function key or cursor direction key as a
user-defined key trap has no effect because they are already
defined.

3. Any key that is trapped is not passed on. That is, the key is
not read by BASIC. This applies to all keys, including
Break or system reset (warm boot)! This powerful fea­
ture allows you to prevent BASIC application users from
accidentally BREAKing out of a program or rebooting
the machine.

Note: When a key is trapped, the occurrence of the
key is not retained in memory. Therefore, you cannot
use the INPUT or INKEY$ statements to find out
which key caused the trap. If you wish to assign dif­
ferent functions to particular keys, you must set up a
different subroutine for each key, rather than assign­
ing the various functions within a single subroutine.

Example

The following program overrides the normal function associated
with function key 4, and replaces it with FILES "A:", which is
printed whenever that key is pressed. The value may be reas­
signed, and it resumes its standard function when the machine
is rebooted.

10 KEY 4,"FILES "+CHR$C34)+"A:"+CHR$C34>
'a55ign5 5oftkey 4

20 KEY(4) ON 'enable5 event trapping

70 ON KEYC4) GOSUB 200

key 4 pre55ed

200'Subroutine for di5playing di5k file5

155

Chapter 10

ON RESTART GOSUB Statement

ON RESTART GOSUB line number

Branches to the specified subroutine when Basic is restarted
after a suspend operation (QUIT, etc.).

Line number is the statement line number of the restart event
trap handler.

This trap lets the program detect when it has been suspended.
Since BASIC does not save the contents of the screen after a sus­
pend operations command, this trap may be used to redraw the
screen when BASIC is restarted.

The RESTART statement controls whether the trap is detected
or not.

If a RESTART OFF statement was executed first, the GOSUB is
not performed and is not remembered.

If a RESTART STOP statement was executed, the GOSUB is not
performed but will be performed as soon as a RESTART ON
statement is executed.

When a RESTART GOSUB is executed, an automatic RESTART
STOP is executed so that recursive traps cannot take place. The
RETURN from the subroutine performs an automatic RESTART
ON unless an explicit RESTART OFF is executed inside the
subroutine.

156

BASIC Keywords

ON TIMER() GOSUB Statement

ON TIMER(number) GOSUB line

Transfers program control to a subroutine when the specified
period of time has elapsed.

Number indicates the number of seconds. Number may be a
value in the range 1 to 86400 (86400 seconds = 24 hours).

Line is the first line number in the subroutine to execute when
the specified time has passed. Use RETURN to exit the
subroutine.

BASIC executes the ON TIMER() GOSUB statement only if a
TIMER ON statement has been executed previously to enable
time event trapping.

If a TIMER STOP statement has been issued to halt time event
trapping temporarily, BASIC executes the subroutine immedi­
ately after the next TIMER ON statement.

When you execute the ON TIMER() GOSUB statement, BASIC
immediately issues a TIMER STOP to prevent recursive traps.
When BASIC executes the RETURN from the subroutine, it
automatically executes another TIMER ON statement to enable
trapping again, unless the subroutine executes a TIMER OFF
statement.

Example
10 TIMER ON
20 ON TIMER CG0> GOSUB 1000
30 REM

500 END

1000 REM PROCESSING ROUTINE

11 00 RETURN 30

157

Chapter 10

Line 10 turns on timer trapping. After each statement is exe,
cuted, BASIC checks to see if the specified time has elapsed. ll
it has, BASIC immediately executes the subroutine at Lim
1000.

158

BASIC Keywords

OPEN Statement

OPEN[device:]filename (FOR mode AS [#]buffer
[LEN= record length]

Establishes input and output to a file or device.

filename is an optional device specification followed by a
filename.

Devwe is a character device.

Mode is one of the following expressions:

OUTPUT Specifies sequential output mode.
INPUT Specifies sequential input mode
APPEND Specifies sequential output mode and

sets the file pointer at the end of file
and the record number as the last
record of the file. A PRINT# or
WRITE# statement then extends
(appends) the file.

If rrwde is omitted, the default random access mode is assumed.
Random, however, cannot be expressed explicitly as the file
mode.

File number is an integer between 1 and 255. The number is
then associated with the file for as long as it is OPEN and is
also used when accessing the file in other disk 1/0 statements.

Record length is an integer that, if included, sets the record
length for random files. The default length for records is 128
bytes.

Files

A file must be opened before any 1/0 operation can be performed
on that file. OPEN allocates a buffer for file or device 1/0 and
determines the access mode to be used with the buffer.

The LEN= option is ignored if the file being opened is a sequen­
tial file.

159

Chapter 10

Devices
BASIC devices are:

KYBD: LPTl: SCRN:

The BASIC file 1/0 system allows the user to take advantage of
user installed devices.

Character devices can be opened and used like disk files. How­
ever, characters are not buffered by BASIC as they are for disk
files. The record length is set to one.

Note: A file can be opened for sequential input or
direct access on more than one file number at a time.
A file may be OPENed for output, however, on only
one file number at a time.

Examples
10 OPEN "MAILING.DAT" FOR APPEND AS 1

The following line opens the printer for output:

100 OPEN "LPT1 :" FOR OUTPUT AS #1

160

BASIC Keywords

POINT/Graphics

POINT (x,y)

Function

POINT (actwn)

Returns the color number of a point on the screen or returns the
current graphic/cursor coordinates.

(x,y) specify the coordinates of the point. x is the horizontal
point, and y is the vertical point. The x and y coordinates must
be absolute values. If you specify a point that is out of range,
BASIC returns a -1.

Actwn is one of the following:

0 returns the current physical x-coordinate (horizontal).

1 returns the current physical y-coordinate (vertical).

Examples
20 LET C=0
30 PSET C 10, 1 0)
40 IF POINTC10,10)=C THEN PRINT "Thi5 point 15

color ";C

10 IF POINT Ci,i)<>0 THEN PRESET Ci,i)
ELSE PSET Ci,i)
'invert current 5tate of a point

20 PSET Ci,i),1-POINTCi,i) 'another way to
invert a point.

161

Chapter 10

POS

POS(number)

Returns the current column position of the cursor.

Number is a dummy argument.

Functio

POS returns a number in the range 1 to 80, indicating the cu
rent cursor-column position on the display.

Example
PRINT TABC40) POSC0)

prints 40. The. PRINT TAB statement moves the cursor to Posi
tion 40; therefore, POS(0) returns the value 40. (Howeve1
because a blank is inserted before the "4" to accommodate th
sign, the "4" is actually at Position 41.)

Sample Program
150 CLS
160 A$ " INKEY$
170 IF A$ •""THEN 160
180 IF POSCX) > 70 THEN IF A$= CHR$C32> THEN A$
• CHRH13)
200 LPR INT A$;
21 0 GOTO 160

This program lets you use your printer as a typewriter (except
that you cannot correct mistakes). Your computer keyboard ie
the typewriter keyboard. Everything you type is printed on your
printer. The program also makes sure that no word is divided
between two lines.

162

BASIC Keywords

PRINT Statement

PRINT data[,data, ...]

Prints numeric or string data on the display. You can substitute
a question mark(?) in place of the word PRINT.

Data is any numeric or string constant or variable. If you omit
data, BASIC prints a blank line. If you specify more that 1 data
item in the statement, separate them by commas, semicolons, or
spaces.

If you use commas, the cursor automatically advances to the
next tab position before printing the next item. (BASIC divides
each line into print zones containing 14 positions each, at col­
umns 14, 28, 42, 56, and 70.)

If you use semicolons or spaces to separate the data items,
PRINT prints the items without any spaces between them.
BASIC begins the next PRINT item where the last one stopped.

If no trailing punctuation is at the end of the PRINT statement,
the cursor drops to the beginning of the next line.

If BASIC tries to print a string longer than it can fit on the cur­
rent line, it moves to the next line and prints the string.

Single precision numbers with 7 or fewer digits that can be accu­
rately represented are printed in regular format rather than
exponential format. Fbr example, lE-7 is printed as .0000001;
lE-8 is printed as lE-08.

Double precision numbers with 16 or fewer digits that can be
accurately represented are printed in regular format rather than
exponential format. For example, lD-15 is printed as
.000000000000001; lD-16 is printed as lD-16.

BASIC prints all numbers with a trailing blank and prints posi­
tive numbers with a leading blank. Negative numbers are pre­
ceded by a minus sign.

String constants must be enclosed in quotation marks.

163

Chapter 10

Examples
PRINT "DO"; "NOT"; "LEAVE"; "SPACES"; "BETWEEN";

"THESE"; "WORDS"

displays DONOTLEAVESPACESBETWEENTHESEWORDS

Sample Program
6" INPUT "ENTER THIS YEAR"; Y 7" INPUT "ENTER YOUR AGE";A
8" INPUT "ENTER A YEAR IN THE FUTURE";F
9" N •A+ CF - Y)
1 H PR INT "IN THE YEAR"F"YOU WI LL BE"N"YEARS
OLD"

Because F and N are positive numbers, PRINT inserts a spacE
before and after them; therefore, your display should look simila.t
to this (depending on your input):

IN THE YEAR 2""4 YOU WILL BE 46 YEARS OLD

Ifwe had separated each expression in Line 100 by a comma:

18" PRINT "IN THE YEAR",F,"YOU WILL BE",N,"YEARS
OLD"

BASIC would move to the next tab position after printing each
data item.

164

BASIC Keywords

PRINT USING Statement

PRINT USING format; data[,data, ...]

Prints data using a format you specified. This statement is espe­
cially useful for printing report headings, accounting reports,
checks, or any other documents that require a specific format.

Format consists of 1 or more field specifier(s), or any alphanu­
meric character. Format must be enclosed in quotation marks.

Data may be string and/or numeric value(s). If you specify more
than 1 data item in the statement, use the same separators as
described in PRINT.

With PRINT USING, you may use certain characters called field
specifiers, to format the field. You may use more than 1 field spe­
cifier, except as indicated.

Specifiers for String Fields:

prints the first character in the string only.

PRINT USING"!"; "PERSONNEL"

BASIC prints P.

\spaces\ prints 2 + n characters from the string (n is the num­
ber of spaces between the slashes). If you type the
backslashes without any spaces, BASIC prints 2 char­
acters; with one space, BASIC prints 3 characters, and
so on. If the string is longer than the field, the extra
characters are ignored. If the field is longer than the
string, the string is left-justified and padded with
spaces on the right.

PRINT USING "\161616\"; "PERSONNEL"

BASIC prints PERSO

& prints the string without modifications.

10 A$.. "TAKE":B$•"RACE"
20 PRINT USING "!";A$;
30 PRINT USING "&";B$

When this program is run, BASIC prints TRACE.

165

Chapter 10

Specifiers for Numeric Fields:

prints the same number of digit positions as number
signs(#). Numbers are rounded as necessary.

You may insert a decimal point at any position. BASIC
always prints the digits preceding the decimal point. If
there is no number, BASIC prints a zero.

If the number to be printed has fewer digits than posi­
tions specified, the number is right-justified (preceded
by spaces). If the number to be printed is larger than
the specified numeric field, a percent sign (%) is
printed in front of the number.

PRINT USING 11 ##.## 11 ;111.22
PRINT USING 11 ##.## 11 ;.75
PRINT USING 11 ###.## 11 ;876.567

BASIC prints %111.22, 0.75 and 876.57, respectively.

If the number of digits specified exceeds 24, an "Illegal
function call" occurs.

+ prints the sign of the number. The plus sign may be
typed at the beginning or at the end of the format
string.

**

166

PRINT USING"+##.##''; -98.45,3.50,22.22,-.9

BASIC prints: -98.45 + 3.50 + 22.22 -0.90

PRINT USING"##.##+"; -98.45,3.50,22.22,-.9

BASIC prints: 98.45- 3.50 + 22.22 + 0.90-

(Note the use of spaces at the end of a format string to
separate printed values.)

prints a negative sign after negative numbers (and a
space after positive numbers).

PRINT USING 11 ###.#- 11 ; -768.660

BASIC prints 768.7-.

fills leading spaces with asterisks. The 2 asterisks also
establish 2 more positions in the field.

PRINT USING"**####"; 44.0

BASIC prints ****44

BASIC Keywords

$$ prints a dollar sign immediately before the number.
This specifies 2 more digit positions, one of which is
the dollar sign. You may not use exponent format with
$$.
PRINT USING 11 $$##.## 11 ; 112.7890

BASIC prints $112.79

**$ fills leading spaces with asterisks and prints a dollar
sign immediately before the number.

PRINT USING"••$##.##"; 8.333

BASIC prints ***$8.33

prints a comma before every third digit to the left of
the decimal point. The comma establishes another digit
position.

PRINT USING 11 ####,,## 11 ; 1234.5

BASIC prints 1,234.50

prints in exponential format. The 4 exponent signs are
placed after the digit position characters. You may
specify any decimal point position. You may not use $$
with exponent format.

PRINT USING 11 .####AAAAII; 888888

BASIC prints .8889E + 06

Prints next character as a literal character.

PRINT USING "_!##.##_!";12.34

BASIC prints !12.34!

Sample Program
420 CLS: A$•"**$##,######.## DOLLARS"
430 INPUT "WHAT IS YOUR FIRST NAME"; F$
440 INPUT "WHAT IS YOUR MIDDLE NAME"; M$
450 INPUT "WHAT IS YOUR LAST NAME"; L$
460 INPUT "ENTER AMOUNT PAYABLE"; P
470 CLS : PRINT "PAY TD THE ORDER OF";
480 PRINT USING"!! ! ! "; F$; 11 • 11 ; M$; 11 • 11 ;

490 PRINT L$
500 PRINT :PRINT USING A$; P

167

Chapter 10

In Line 480, each ! picks up the first character of one of the fol­
lowing strings (F$, ".", M$, and"." again). Notice the 2 spaces in
"!!b!!b". These 2 spaces insert the appropriate spaces after the
initials of the name (see below). Also notice the use of the vari­
ables A$ for format and P for item list in Line 500. Any serious
use of the PRINT USING statement would probably require the
use of variables rather than constants, at least for data items.
(We have used constants in our examples for the sake of better
illustration.)

When the program above is run, the display shows:

168

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTER AMOUNT PAYABLE? 12345.6
PAY TO THE ORDER OF J. P. JONES

*****$12,345.60 DOLLARS

BASIC Keywords

PRINT# Statement

PRINT# buffer,[USING format] data[,data, ...]

Writes data items to a sequential file.

Buffer is the number assigned to the file when you opened it.

When you first open a file for sequential output, BASIC sets a
pointer to the beginning of the file-that is where PRINT#
starts writing the data items. At the end of each PRINT# opera­
tion, the pointer advances so that data items are written in
sequence.

A PRINT# statement creates a file image similar to the image
a PRINT to the display creates on the screen. Fbr this reason, be
sure to delimit the data so that it will be input correctly from
the file.

PRINT# does not compress the data before writing it to the file.
It writes an ASCII-coded image of the data.

When you include the USING option, data is written to the file
in the format you specify. See PRINT USING.

Examples
If A• 123.45
PRINT# 1 ,A

writes this 9-byte character sequence to the file as:

~123.45~ carriage return

The punctuation in the PRINT list is very important. Unquoted
commas and semicolons have the same effect as they do in regu­
lar PRINT statements to the display. Fbr example:

A == 2300
B • 1.303
PRINT# 1, A,B

writes the data to the file:

~ 2300 ~~~~~~~~~~ 1 .303~ carriage return

The comma tells BASIC to tab between A and B, which creates
10 extra spaces in the file. Generally you do not want to use up
storage space this way, so you use semicolons instead of commas.

169

Chapter 10

PR I NT# 1 , A; ","; B

This time BASIC writes the data as:

123.45,1.303

An INPUT# statement reads this as 2 separate fields.

If string variables contain commas, semicolons, or leading
blanks, enclose them in quotation marks. For example:

A$• CAMERA, AUTOMATIC
B$ " 102382
PR I NT# 1 , A$; B$

writes the data as:

CAMERA~~~~~~~~~~AUTOMATIC102382

An INPUT# statement reads this as 2 separate fields

A$• CAMERA
B$ • AUTOMATIC102382

To separate these 2 strings properly in the file, write quotation
marks using the hexadecimal representation CHR$(34). For
example:

PRINT# 1, CHRH34); A$; CHR$C34); B$; CHR$C34)

BASIC writes the following image to the file:

"CAMERA,AUTOMATIC"102382"

The statement INPUT# 1, A$, B$ reads "CAM­
ERA,AUTOMATIC" into A$ and "102382" into B$.

You can write files in a carefully controlled format using
PRINT# USING. You also can use this option to control how
many characters of a value are written to the file.

Fbr example, suppose A$ = "LUDWIG", B$ = "VAN", and C$ =
"BEETHOVEN". Then the statement:

PRINT# 1, USING 11 !.!.\~~\ 11 ;A$;B$;C$

writes the data in nickname form:

L.V.BEET

(In this case, we did not want to add any explicit delimiters.) See
PRINT USING for more information on the USING option.

170

BASIC Keywords

PSET/PRESET/Graphics

PSET [STEP] (x,y)[,color]
PRESET [STEP] (x,y)[,color]

Statement

Draws a point on the display.

The STEP option tells BASIC that the (x,y) coordinates are rela­
tive to the last point referenced.

(x,y) specify the coordinates in which to draw the point.Xis the
horizontal coordinate and y is the vertical coordinate.

Co/,or specifies the color of the point.

The only difference between the PSET and PRESET statements
is the default values for co/,or. If you use PSET, co/,or defaults to
the foreground color (1). If you use PRESET, co/,or defaults to the
background color (0).

Note: BASIC does not print and does not issue an
error message for points the coordinate values of
which are beyond the edge of the screen. However,
values outside the integet range (-32768 to 32767)
cause an overflow error.

Sample Program
5 CLS

10 FOR I= e TO 1""
2e PSET CI,I>
3e NEXT I'draw a diagonal line
4e FOR I • 1ee TO e STEP -1
se PRESET CI,I>,e
Ge NEXT I

to (1"",1"">

1e 'clear the line by 5etting each pixel to"

Lines 10 to 30 draw a diagonal line on the screen from the home
position to Position 100,100. Lines 40 to 60 erase the line by
drawing another line at the same position in the background
color.

171

Chapter 10

PUT Statement

PUT [#]buffer [,record number]

Writes a record from a random buffer to a random access file.

Buffer is the number under which the file was opened. If record
number is omitted, the record uses the next available record
number (after the last PUT or GET). The largest possible record
number is 16,777,215. The smallest record number is 1.

LSET, RSET, PRINT#, PRINT# USING, and WRITE# may be
used to put characters in the random file buffer before executing
a PUT statement.

In the case of WRITE#, BASIC pads the buffer with spaces up
to the carriage return. Any attempt to read or write past the
end of the buffer causes a "Field overflow" error.

Example
100 PUT 1, A$, 8$, C$

172

BASIC Keywords

QUIT

QUIT

Suspends BASIC and activates another application.

If this command is encountered at the command level, only the
currently loaded program text is saved. In this case, it is impos­
sible to CONT or RESUME this program. All open files are
closed; all numeric variables are set to 0; and all string variables
are set to null. When this work file is re-activated, the currently
loaded program is still loaded.

If this command is encountered in a running program, the en­
tire program is saved. When this work file is re-activated the
program continues as if it had never been suspended.

173

Chapter 10

RANDOMIZE

RANDOMIZE [number]

Reseeds the random number generator.

Function

Number may be an integer, or single- or double precision num­
ber. If you omit number, BASIC suspends program execution and
prompts you for a number before executing RANDOMIZE:

Random Number Seed C-32768 to 32767)?

If the random number generator is not reseeded, the RND func­
tion returns the same sequence of numbers each time it is exe­
cuted. To change the sequence of random numbers every time
the RND function is executed, place a RANDOMIZE statement
before the RND function.

Sample Program

174

10 CLS
20 RANDOMIZE
30 INPUT "PICK A NUMBER BETWEEN 1 AND 100"; A
40 B z INTCRND*100)
50 IF AzB THEN 80
60 PRINT "You lose, the answer is"B;"--try

;ia~~r~ 20
80 PRINT "You picked the right number -- you
win."

BASIC Keywords

READ Statement

READ variabk[,variabk, ...]

Reads values from a DATA statement and assigns them to
1ariables.

BASIC assigns values from the DATA statement on a one-to-one
:>asis. The first time READ is executed, the first value in the
rirst DATA statement is assigned to the first variable; the second
;ime, the second value is assigned to the second variable; and so
)ll.

I\. single READ may access 1 or more DATA statements, or sev­
~ral READs may access the same DATA statement. If a program
~ontains multiple DATA statements, BASIC reads them in the or­
:ler they appear.

rhe values read must agree with the variable types specified in
1 list of variables; otherwise, a "Syntax error" occurs.

[f the number of variables in the READ statement exceeds the
t1umber of elements in the DATA statement(s), BASIC returns an
'Out of DATA" error message. If the number of variables speci­
ried is less than the number of elements in the DATA state­
ment(s), the next READ statements begin reading data at the
rirst unread element.

ro reread DATA statements from the start, use the RESTORE
,tatement.

Example
READ T

reads a numeric value from a DATA statement and assigns it to
variable T.

175

Chapter 10

Sample Program

This program illustrates a common application for the READ
and DATA statements.

176

4fll PR I NT "NAME", "AGE"
50 READ NS
Gfll IF NS•"END" THEN PRINT "END OF LIST": END
7fll READ AGE
8fll IF AGE<18 THEN PRINT NS, AGE
9fll GOTO 50
1fllfll DATA "SMITH, JOHN", 3fll, "ANDERS, T.M. 11 , 2fll
11fll DATA "JONES, BILL", 15, "DOE, SALLY", 21
12fll DATA "COLLINS, W.P. 11 , 17, "END"

BASIC Keywords

REM

REM

Inserts a remark line in a program.

Statement

REM instructs the computer to ignore the rest of the program
line, which lets you insert remarks in your program for docu­
mentation. Thus, when you look at a listing of your program, you
can quickly interpret it.

If REM is used in a multistatement program line, it must be the
last statement in the line.

You may use an apostrophe (') as an abbreviation for REM.

Sample Program

OR

110 DIM VC20)
120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
140 SUM•SUM + VCI>
150 NEXT I

110 DIM VC20)
120 FOR 1•1 TO 20
130 SUM=SUM + VCI>
140 NEXT I

'CALCULATE AVERAGE VELOCITY

177

Chapter 10

RENUM Statement

RENUM [new line][,[line][,increment]]

Renumbers the program currently in memory. You can renumbe1
the entire program or renumber from a specific line to the end.

Line is the line in the program where BASIC starts renumber•
ing. If you omit line, it renumbers the entire program.

New line is the new line number assigned to line. If you omi1
new line, BASIC starts numbering at Line 10.

Increment tells BASIC how to number the successive line. If ym:
omit increment, it increments by 10.

RENUM also changes all line number references appearing afte1
GOTO, GOSUB, THEN, ON/GOTO, ON/GOSUB, ON ERROE
GOTO, RESUME, and ERL.

You cannot use RENUM to change the order of program lines
For example, if a program has lines numbered 10, 20, and 30
the command RENUM 15,30 is illegal, since this would placE
Line 30 before Line 20.

Also RENUM cannot create line numbers greater than 65529. I:
you attempt to do this, BASIC returns an "Illegal function call'
error and leaves the program unchanged.

If BASIC finds an undefined line number within the program, i1
prints a warning message, "Undefined line xx.xx in yyyy," wherE
xx.xx is the undefined line number and yyyy is the line where i1
appears. RENUM renumbers the program despite this warnin~
message. It does not change the incorrect line number reference
but it does renumber yyyy.

178

Examples
RENUM

BASIC Keywords

renumbers the entire program, using an increment of 10. The
new number of the first line is 10.

RENUM 600, 5000, 100

renumbers from Line 5000 to the end of the program. The first
renumbered line becomes 600, and an increment of 100 is used
between subsequent lines.

RENUM 100,,100

renumbers the entire program, starting with a new line number
100, and incrementing by 100s. Notice that the commas must be
retained even though the middle argument is not used.

179

Chapter 10

RESET

RESET

Closes all open files on the disk drive.

Statemen

If a disk contains any open files, RESET writes all blocks i:
memory to disk.

RESET ensures that all files on all diskettes are closed befor
you remove them from the drives. RESET is the same as 1

CLOSE statement for each open file.

180

RESTART ON/OFF/STOP

RESTART ON
RESTART OFF
RESTART STOP

RESTART ON enables restart trapping
RESTART OFF disables restart trapping
RESTART STOP suspends restart trapping

BASIC Keywords

Statement

These statements are used. in conjunction with the ON RE~
START GOSUB statement. (See the description of that sta~
ment for more information.)

181

Chapter 10

RESTORE

RESTORE [line]

Statement

Restores a program's access to previously read DATA statements.

Line is a line number that contains a DATA statement. If you
specify line, the next READ statement accesses the first item in
the specified DATA statement. If you omit line, BASIC resets to
the first DATA statement in the program.

This lets your program reuse the same DATA lines.

Sample Program
160 READ X$
170 RESTORE
180 READY$
190 PRINT X$, Y$
200 DATA FIRST ITEM, SECOND ITEM

When you run this program, BASIC prints:

FIRST ITEM FIRST ITEM

Because of the RESTORE statement in Line 170, the second
READ statement starts over with the first DATA item.

182

BASIC Keywords

RESUME

RESUME [line]
RESUME NEXT

Statement

Resumes program execution after an error-handling routine.

RESUME without an argument and RESUME 0 both cause the
computer to return to the statement in which the error has
occurred.

RESUME line causes the computer to branch to the specified
line number.

RESUME NEXT causes the computer to branch to the state­
ment following the point at which the error has occurred.

Examples
RESUME

If an error has occurred, this line transfers program control to
the statement in which it has occurred.

RESUME 10

If an error has occurred, transfers control to Line 10.

Sample Program
10 ON ERROR GOTO 900

900 IF CERR=230) ANDCERL=90) THEN PRINT "TRY
AGAIN" :RESUME 80

183

Chapter 10

RETURN

RETURN [line]

Statemen1

Returns control to the line immediately following the most re­
cently executed GOSUB.

Lin£ tells BASIC to return to a specific line in the program. If
you omit Zin£, BASIC goes to the line immediately following the
GOSUB.

Use caution when specifying a line number with RETURN. Any
other GOSUB, WHILE, or FOR statement remains active while
a GOSUB subroutine is executing. If BASIC returns to a line
number that is outside these loops, an error occurs because the
loops were left incomplete.

If the program encounters a RETURN statement without execu­
tion of a matching GOSUB, an error occurs.

Example
RETURN 40

returns from the subroutine to Line 40 in the program.

Sample Program

184

330 PRINT "THIS PROGRAM FINDS THE AREA OF A
CIRCLE"
340 INPUT "TYPE IN A VALUE FOR THE RADIUS"; R
350 GOSUB 370
360 PRINT "AREA IS" ; A: END
370 A• 3.14 * R * R
380 RETURN

RIGHT$

RIGHT$(string,number)

BASIC Keywords

Function

Returns the specified number of characters from the far right
portion of string.

Number is an integer in the range 1 to 255.

If number is equal to or greater than the length of string, BASIC
returns the entire string.

Examples
PRINT RIGHTH"WATERMELON", 5)

prints MELON.

PRINT RIGHTSC"MILKY WAY", 25)

prints MILKY WAY.

Sample Program
850 RESTORE : ON ERROR GOTO 880
860 READ COMPANY$
870 PRINT RIGHTSCCOMPANYS, 2), : GOTO 860
880 END
890 DATA "BECHMAN LUMBER COMPANY, SEATTLE, WA"
900 DATA "ED NORTON SEWER SERVICE, BROOKLYN, NY"
910 DATA "HAMMON MANUFACTURING COMPANY, HAMMOND,
IN"

This program prints the name of the state in which each com­
pany is located.

185

Chapter 10

RND

RND[(number)]

Returns a random number in the range 0 and 1.

Function

BASIC uses the current seed when generating a random number
and produces the same sequence of random numbers each time
the program is run unless you reseed the random number gener­
ator. Use the RANDOMIZE statement to reseed the random
number generator.

If number is negative, RND starts the sequence of random num­
bers at the beginning. If number is 0, RND repeats the last
number generated. If you omit number or specify a positive
value, RND returns the-:n.ext number in the sequence.

Example
PRINT RNDC1)

prints the next decimal fraction in the sequence.

Sample Program
1 0 FOR I = 1 TO 5
20 PRINT INTCRND*100>;
30 NEXT I

This program produces 5 random integers. Line 20 converts the
decimal fraction returned by RND to a real number and trun­
cates the real number to an integer.

186

BASIC Keywords

RSET Statement

RSET f-ield name = data

Sets data in a direct access buffer fie/,d name in preparation for a
PUT statement.

Fudd name is a string variable defined in a FIELD statement.

This statement is similar to LSET. The difference is that with
RSET, data is right-justified in the buffer.

See LSET for details.

187

Chapter 10

RUN

RUN [line]
RUN fiknarne[,R]

Executes a program.

Statement

Line is the program line where BASIC begins execution. If you
omit line, BASIC executes the program from the beginning.

Fikname specifies the file for BASIC to load into memory and
execute.

If you specify the R option, BASIC does not close the open files
before loading the new program into memory. If you omit the R
option, BASIC closes all open files before loading the program.

RUN automatically clears all variables.

Examples
RUN

starts execution at the beginning of the program.

RUN 100

starts execution at Line 100.

RUN "program.a"

loads and executes program.a.

188

BASIC Keywords

SAVE Statement

SAVE fikname [,A]
SAVE fikname [,P]

Saves a program in RAM or on disk with the specified name.

fi'ilename is a standard file specification as described in Chapter
1. When you save a file, you must specify the filename. If the file
already exists, its contents are lost when the file is re-created.

rhe A option tells BASIC to save the program in ASCII format.
[f you omit the A option, BASIC saves the file in a compressed
format.

rhe compressed format takes less space than ASCII format. Also
BASIC can save and load in compressed format faster than in
I\.SCII format.

Use the ASCII format if you plan to use the MERGE command
to merge the program with another. Also, data programs that
will be read by other programs usually must be in ASCII.

When using the ASCII option, be sure your program has no
embedded line feeds; otherwise, the computer will not be able to
read it properly. Embedded line feeds are produced by typing
CTRL IQ] in a program line.

For compressed-format programs, a useful convention is the ex-
tension .bas. For ASCII-format programs, use .txt. ·

Note: If you do not specify an extension, BASIC auto­
matically appends the default extension .BAS to the
filename.

rhe P option protects the file by saving it in an encoded binary
format. When a protected file is later run (or loaded), any at­
tempt to list or edit it fails. The only operations that you can
perform on a protected file are RUN, LOAD, MERGE, and
CHAIN.

Examples
SAVE "A:file1 .bas"

saves the resident program in compressed format as filel .bas.
rhe file is placed on Drive A:.

SAVE "mathpak.txt", A

saves the resident program in ASCII form, using the name math­
r,ak.txt in RAM.

189

Chapter 10

SGN

SGN(number)

Determines number's sign.

If number is a negative number, SGN returns -1.
If number is a positive number, SGN returns 1.
If number is zero, SGN returns 0.

Examples
Y • SGNCA * B>

Function

determines the sign of the expression A * B, and passes the
appropriate number (-1,0,1) to Y.

Sample Program

190

61 0 INPUT "ENTER A NUMBER"; X
620 ON SGNCX) + 2 GOTO 630, 640, 650
630 PRINT "NEGATIVE": END
640 PRINT "ZERO": END
650 PRINT "POSITIVE": END

BASIC Keywords

SIN Function

SIN(number)

Returns the sine of number.

SIN returns the sine of the angle represented by number.

Number must be in radians. To obtain the sine of number when
number is in degrees, use SIN(number * pi/180).

BASIC always returns the result as a double precision number.

Examples
PR INT SI NC7. 96)

prints .99438531502814.

Sample Program
660 INPUT "ANGLE IN DEGREES"; A
670 PRINT "SINE IS"; SINCA * .01745329)

191

Ch.apter 10

SOUND Statement

SOUND frequency,duratwn

Generates a sound through the speaker.

Frequency is the desired frequency in hertz. This must be a posi­
tive integer in the range of 0 to 65535. The range of audible fre­
quencies is approximately 94 to 15000.

Duratwn is the duration in clock ticks which occur 18.2 times
per second. This must be a positive integer with a range of 0 to
2978.

If the duration is zero, any current SOUND statement that is
running is turned off. If no SOUND statement is currently run­
ning, a SOUND statement with a duration of zero has no effect.

Example
30 SOUND RND•1000+37,2

This statement creates random sounds.

192

BASIC Keywords

SPC Function

SPC(number)

Prints number blanks.

Number is in the range 0 to 255.

You may use SPC only with PRINT, LPRINT, or PRINT# .

Example
PRINT "HELLO" SPCC15) "THERE"

prints:

HELLO THERE

193

Chapter 10

SQR

SQR(number)

Returns the square root of number.

Number must be greater than zero.

Functio1

BASIC always returns the result as a double precision number.

Example
PRINT SQRC155.7)

prints 12.4 77980605852.

Sample Program
680 INPUT "TOTAL RESISTANCE COHMS>"; R
690 INPUT "TOTAL REACTANCE (OHMS>"; X
700 Z • SQRCCR * R> + ex* X))
710 PRINT "TOTAL IMPEDANCE COHMS) IS" Z

This program computes the total impedance for series circuits.

194

STOP

STOP

Stops program execution.

BASIC Keywords

Statement

When BASIC encounters a STOP statement, it prints the mes­
sage "BREAK IN xxxx," where xxxx is the line number that con­
tains the STOP. STOP is primarily a debugging tool. During the
break in execution, you can examine variables or change their
values.

Use the CONT statement if you want to resume execution. If the
program itself has been altered during the break, you cannot
use CONT.

Unlike the END statement, STOP does not close files.

Sample Program
2260 X s RNDC10)
2270 STOP
2280 GOTO 2260

A random number in the range 1 to 10 is assigned to X and
then program execution halts at Line 2270. You can now exam­
ine the value X with PRINT X. Type CONT to start the cycle
again.

195

Chapter 10

STR$

STR$(number)

Converts number to a string.

Function

If number is positive, STR$ places a blank before the string. IJ
number is negative, STR$ places a minus sign (-) before thE
string.

While arithmetic operations may be performed on number, onl)
string functions and operations may be performed on the string.

The complementary function to STR$ is VAL.

Example
S$ • STRHX>

converts the number X into a string and stores it in S$.

Sample Program

196

10 A• 1.6 : 8# • A : C# • VALCSTRHA»
20 PRINT "REGULAR CONVERSION" TA8C40) "SPECIAL
CONVERSION"
30 PRINT 8# TA8C40) C#

BASIC Keywords

SYSTEM

SYSTEM

Statement

Returns you to the main menu.

BASIC closes all files before returning to the menu. Your resi­
dent BASIC program is lost, unless you first save it to RAM.

Examples
SYSTEM

Note: When you exit BASIC or a BASIC program with
SYSTEM, no .BMI file of the program is created.
When you exit a .BMI file with SYSTEM, the file is
erased. If you exit BASIC with I CTRL I ffi!] or I CTRL I 00,
you save the program you are working on in a .BMI
file.

197

C hap-ter 10

TAB Function

TAB(number)

Spaces to position number on the display.

Number must be in the range 1 to 255 and specifies the charac­
ter position to which to tab. The leftmost position is 1, and the
rightmost position is the set width minus 1.

If the current print position is already beyond space number,
TAB goes to that position on the next line.

You cannot use TAB to move the cursor to the left.

You cannot use TAB more than once in a print list.

You may use TAB only with the PRINT and LPRINT
statements.

Sample Program
10 PR INT "NAME" TABC 25 > "AMOUNT": PR I NT
20 READ A$, 8$
30 PRINT A$ TABC25) 8$
40 DATA "G.T.JONES","$25.filfil"

When you run this program, the display shows:

NAME AMOUNT

G.T.JONES $25. filfil

198

BASIC Keywords

TAN Function

TAN(number)

Returns the tangent of number.

Return the tangent of the angle represented by number.

Number must be in radians. To obtain the tangent of number
when it is in degrees, use TAN (number * pi/180).

BASIC always returns the result as a double precision number.

Example
PRINT TANC7.96>

prints -9.3969620130791.

Sample Program

This programs asks you to input an angle in degrees and re­
turns the tangent in radians.

720 INPUT "ANGLE IN DEGREES"; ANGLE
730 T • TANCANGLE * .01745329)
740 PRINT "TAN IS" T

199

Chapter 10

TIME$

TIME$[=string]

Sets or retrieves the current time.

Statement

String is a literal, enclosed in quotation marks, that sets the
time by assigning its value to TIME$. If you omit string, BASIC
retrieves the current time.

BASIC uses a 24-hour clock. Fbr example, it sets 8:15 P.M. as
20:15:00.

Setting the Time
You set the time in the following format:

hh:mm:ss

The hours (hh) may be any number 0-23.
The minutes (mm) and the seconds (ss) may be any number
0 through 59.

If you omit the minutes, minutes and seconds default to
zero. If you omit the seconds, seconds default to zero.

Although you may omit leading zeros in each of the values, you
must include at least 1 digit of the preceding value. Fbr example,
you may type 1:5 to set the the time to 1:05 A.M. However, :5 is
invalid.

Retrieving the Time
BASIC always returns the time in the 8-character (hh:mm:ss)
format, with leading zeros. You may set the time before you enter
BASIC.

200

BASIC Keywords

Examples
TIME$ •"14:15"

sets the current time to 14:15:00.

TIME$• "3:3:3"

sets the current time to 03:03:03.

A$•TIME$

assigns the current time to the variable A$.

PRINT TIME$

prints the current time.

201

Chapter 10

TIMER/Trap

TIMER actwn

Statement

Turns on, turns off, or temporarily halts timer event trapping.

At:twn may be any of the following:

ON enables timer event trapping.
OFF disables timer event trapping.
STOP temporarily suspends timer event trapping.

Use the TIMER/Trap statement in a timer trap routine with the
ON TIMER() GOSUB statement to detect when a specified
period of time has elapsed.

The TIMER ON statement turns on the trap. BASIC checks the
the value of timer after each program line. If the number is
equal to that in the ON TIMER() GOSUB statement, BASIC
transfers program control to the line number specified.

The TIMER STOP statement temporarily halts timer trapping.
If the timer equals the specified number, BASIC does not trans­
fer program control to the ON TIMER() GOSUB statement until
you turn on trapping again by executing a TIMER ON state­
ment. BASIC remembers that the timer value was equal and
branches to the subroutine immediately after trapping is turned
on again.

The TIMER OFF statement turns off timer trapping. BASIC
does not remember if the value of timer equals the number spec­
ified when trapping is turned on again.

See ON TIMER() GOSUB for more information about timer
event trapping.

Sample Program

See ON TIMER() GOSUB for an example.

202

TB,OFF,TRON

TROFF
TRON

Turn the trace function on/off.

BASIC Keywords

Statements

TRON turns on the tracer and TROFF turns it off.

The tracer lets you follow program flow. This is helpful for
debugging and for analyzing the execution of a program. After a
program is debugged, you can remove the TRON and TROFF
statements.

Each time the program advances to a new line, the tracer dis­
plays that. line number inside a pair of brackets.

Sample Program
2290 TRO.N
2311 X = X * 3.14159
2310 TROFF

Lines 2290 and 2310 assure you that Line 2300 is actually
being executed, because [2300] is printed on the display each
time it is executed.

5 TRON
10 K•10
21 FOR J•1 TO 2
30 L•K+11
41 PRINT J;K;L
51 K•K+10
60 NEXT J
71 TROFF
80 END

When you run this program, BASIC prints:
(11][20][38][48] 1 11 21
(58]£60][38][41] 2 21 31
C 50 H61 lC70 J

Chapter 10

VAL

VAL(string)

Calculates the numerical value of string.

Function

VAL is the inverse of the STR$ function; it returns the number
represented by the characters in a string argument. This num­
ber may be integer, single precision, or double precision, depend­
ing on the range of values and the rules used for typing all
constants.

VAL terminates its evaluation on the first character that has no
meaning in a numeric value.

If the string is nonnumeric or null, VAL returns a zero.

Examples
PRINT VALC"100 DOLLARS">

prints 100.

PRINT VALC"1234E5">

prints 123400000.

Sample Programs
10 READ NAME$, CITY$, STATE$, ZIP$
20 IF VALCZIP$) < 90000 OR VALCZIP$) > 96699
THEN PR INT NAME$ TABC 25 > "OUT OF STATE"
30 IF VALCZIP$) > 90801 AND VALCZIP$) <• 90815
THEN PRINT NAME$ TABC25> "LONG BEACH"

This program searches for zip codes within the specified ranges
to determine if they are within Long Beach or "out of state."

204

BASIC Keywords

WRITE Statement

WRITE data[,data, ...]

Writes data to the screen.

Data can be any string or numeric expression or variables. If you
Jmit data, BASIC outputs a blank line.

l'he only difference between WRITE and PRINT is that WRITE
prints commas between the data items and prints quotation
marks around strings.

205

Chapter 10

WRITE# Statemen1

WRITE#buffer, data[,data, ...]

Writes data to a sequential access file.

Buffer is the number assigned to the file when you opened it.

Data may be numeric or string expressions. If you specify more
than one data item, separate the items with commas.

WRITE# inserts commas between the data items it writes to
the file. It delimits strings with quotation marks. Therefore, it is
not necessary to put explicit delimiters between the data.

WRITE# inserts a carriage return after writing the last data
item to the file.

Example
A$•"MICR•C•MPUTER": 8$•"NEWS"
WRITE#1, A$,8$

writes the following image to a file:

"MICR•C•MPUTER","NEWS"

206

Chapter 11

TECHNICAL INFORMATION

ABOUT LIBRARY FILES

Assembly Language Subroutines
Handheld BASIC programs can transfer control to assembly lan­
guage subroutines using the CALL statement. These subroutines
reside in specially formatted library files. The file
DBCALLS.LIB is BASIC's standard library and contains sup­
plied standard subroutines. You may add your own set of library
routines by creating specially formatted library files and specify
the name of this library with the LIBRARY statement. When
searching for a subroutine, BASIC always searches libraries in
the reverse order in which they were specified with the LI­
BRARY statement.

The LIBRARY Statement
LIBRARY <library name> is a string expression that indicates
the name of an in-memory data file that is formatted as a li­
brary file which is used to search for subroutines specified in the
CALL statement.

The LIBRARY CLOSE option lets you remove ALL libraries
from the list of active libraries being searched by CALL state­
ments. You may not remove only one library from the list.

The CALL Statement
CALL <routine name> [(<argument list>)] defines the name of
the routine to which control is passed. All user libraries are
searched for a routine with this name. If more than one LI­
BRARY statement is issued, the libraries are searched in the re­
verse order in which they were specified. If the subroutine is not
found in any of the active libraries, an error occurs. <argument
list> is an optional list of variables or constants, separated by
commas, that are passed to the subroutine.

Invoking the CALL statement causes the following actions:

1. A search is made for the routine name in the active libraries
(if any are defined).

207

Chapter 11

2. Each argument in the argument list is evaluated and tl
proper value is pushed onto the stack. The arguments a1
evaluated and pushed in a left-to-right order, so the first a:
gument in the argument list is in the stack at the highe1
memory address.

3. Control is passed to the subroutine by executing an 8086 fa
call to the proper segment/offset for the routine.

Calling Conventions
The state of the stack when the subroutine gains control is:

high
addresses BP

low
addresses

number of arguments

argument 1

argument n-1

argument n

para offset to workspace seg*

return segment address

return offset address

SP+6

SP+4

SP+2

SP

Note: *The workspace offset is the number of paragraphs belo"
the current BASIC Data Segment (same as Stack Seg•
ment) where the library's workspace is located. This mem­
ory is preserved until either the library is closed, or
BASIC's workspace file is deleted. Th.e initial size of this
memory area is determined by an offset in th.e libraries
h.eader bkJck. This memory may be used to store global
values unique to this invocation of the library. It is pre­
served across suspend operations so it may also be used to
store information useful in restarting the library - i.e.
file control blocks.

To access this workspace, one must subtract the specified num­
ber of paragraphs from BASIC's DS.

208

Technical Informatwn About Library Fil.es

The following rules must be adhered to in assembly level
subroutines:

1. When the routine begins execution, the values of DS, ES, and
SS are set to the segment address of BASIC's data segment.
When the routine exits, all three segments MUST still point
to BASIC's data segment. However, because any file 1/0 oper­
ations may move BASIC's data segment, special care must be
taken to preserve this address. All values in segment regis­
ters are correctly updated by the operating system if the file
system moves. BASIC's DATA segment address MUST remain
in the SS register during any 0/S calls since a file system re­
quest may force BASIC to return some free space to the file
system in order to complete the 1/0 request.

Note that if this occurs, BASIC's stack will move so that it is
quite possible that when you return from an 0/S call, the SP
will have changed. All of the data on the stack (i.e. return
addresses and arguments) will still be in the same relative
locations but any stack markers you have stored must be
adjusted.

2. If an OS call forces BASIC to return some Free space to the
file system, the stack pointer offset is changed during the OS
call. All values on the stack are adjusted correctly.

3. If interrupts are disabled in the routine, they must be en­
abled before returning to BASIC.

4. The stack must be in a consistent state when the routine ex­
its. That is, the stack pointer (SP), when BASIC regains con­
trol must point to the workspace segment offset parameter
(input SP+ 4). The most convenient way to do this is to re­
turn from the routine using a 8086 far return instruction.

5. The stack passed to the routine may be used for temporary
variables. If global (to the library) variables need to be allo­
cated, they may be either allocated in the library's code seg­
ment (assuming the library is in RAM) or the library may
define and use a reserved block of memory.

6. The values of any argument passed by reference may be
changed. However, care must be taken to properly format the
data using the information in the INTERNAL DATA FOR­
MATS section as a guide.

209

Chapter 11

Warning: If the argument is a string literal in the program
the string descriptor points to program text. If this string iE
modified, the actual program is modified. To avoid string lit•
erals in the program, concatinate a null string("") to the lit•
eral in the program. For example, use

20 A$ = "ABCD" +" "
This forces the string literal to be copied into string space
The string may then be modified without affecting thE
program.

7. The contents of a string may be changed, but care must bE
used in modification of the string descriptor. The strin~
length may be decreased, but not increased.

Argument Values on the Stack
The format of the values pushed on the stack for an argumen1
varies depending upon the argument type. All argument values
however, have the same generalized format:

high
Argument value

(n bytes)

low
addresses

All pointers on the stack are relative to BASIC's data segmen1
which is contained in DS when the routine is called.

The Argument length byte defines the byte length of the argu•
ment value. This is useful in that the address of the argumen1
value minus this length results in the address of the type/length
word for the next argument on the stack.

The value of the argument type byte is a bit-encoded value with
the following bit definitions:

210

Bit 7 Reference/value bit. If this bit is 0, the argument
was passed by reference. In this case, the argu•
ment value will be the address of the value or a
descriptor (for strings and arrays). If this bit iE
1, the argument was passed by value. In thiE
case, the argument value is the actual value oJ
the argument.

Technical Informatwn About Library Files

Bit 5 Null argument bit. If this bit is set, a null argu­
ment is passed. This is used as a place keeper for
calls with optional arguments but strict argu­
ment ordering (i.e. "CALL FOO(A,B, ,C)"). There
is no argument value for this type of argument
(length is 0).

Bit 4 Array reference bit. If this bit is 1, the argument
is an array passed by reference (i.e. - "AR­
RAY()"). The argument value is a pointer to an
array descriptor. Bits 0-3 of this byte define the
data type of the array elements.

Bit 3 Double precision floating bit. If this bit is set,
the argument is a double precision floating point
number.

Bit 2 Single precision floating bit. If this bit is set, the
argument is a single precision floating point
number.

Bit 1 Integer bit. If this bit is set, the argument is a
16-bit integer.

Bit 0 String bit. If this bit is set, the argument value
is a pointer to a string descriptor.

For bits 1-3, if the reference/value bit (bit 7) is 0, the argument
value is a pointer to the value. If bit 7 is set, the argument value
is the actual value of the argument.

All simple variable parameters are passed by reference. Arrays,
however, are passed in two different ways. If a subscript is given
with the array, it is evaluated and the address of the specific ar­
ray element is passed by reference. If a null subscript (i.e. -
"FOO()") is given, the address of the array descriptor is passed.
The array must already exist for this form to be used. All
expressions and constants (except for strings) are passed by
value.

211

Chapter 11

Returning Errors to BASIC
When BASIC regains control after a call, the value of the 8081
flag-word is significant. The carry bit in the flag word is used ti
indicate whether or not the called subroutine encountered an er
ror. If the carry bit is clear (a zero) upon return, BASIC as
sumes there were no errors and continues executing statement
normally. However, if the carry bit is set, BASIC returns an er
ror condition. In this case, the contents of the AL register is as
sumed to contain a BASIC error code. Control is then passed ti
BASIC's error processing code to process the error passed in AL
This will have the same effect as the user executing an ERROi
statement with this error code. If error-trapping is enabled, thi
GOSUB specified is taken. The error code may be determined b:
using the ERR variable.

Internal Data Formats
The internal storage format of a data item within BASIC is:

Integer

The value is stored as a 16-bit 2's complement integer. 8086 con
vention stores the least significant byte first, and then the mos
significant byte.

Single Precision Floating
A single precision number is a 4-byte value in decimal floatiilj
point format. This format is:

Byte: Exponent. The exponent is broken into the following parts:

Bit 7 : Sign bit. This bit is 0 if the number is positive anc
1 if it is negative.

Bits 6-0 : Exponent value in excess-64 format. This value i:
a power of 10 exponent which determines the dee
imal position in the represented number.

3 Bytes: Mantissa. These bytes contain pack BCD digits wit]
the most significant digit of the number in the byte o
the mantissa with the lowest address. This mantiss1
can contain 6 digits (2 per byte).

212

Technical Information About Library Fi/,es

NOTE: Excess-64 format can be converted to decimal by sub­
tracting 64 from bits 6-0 of the exponent. Conversely, to
convert to excess-64 format, add 64 to the number. For
example:

Exponent
5

-16

Excess 64
69 (45 Hex)
48 (30 Hex)

An excess-64 format exponent of 0 is reserved to indi­
cate that the value represented is zero. Thus, valid expo­
nents are in the range - 63 to + 63.

Double Precision Floating

A double precision number is stored as an 8-byte value. The for­
mat if this value is the same as for single precision except that
there are 7 bytes of mantissa rather than 3. The most signifi­
cant byte (lowest address) is still the exponent byte.

String

Strings are defined by a 3-byte string descriptor. The format of
this descriptor is:

Byte : 1 byte unsigned integer that contains the length of the
string.

Word: Two byte pointer that contains the address of the first
byte of the string.

Array Descriptor

An array descriptor is a variable size block which contains infor­
mation about the array. Its format is:

Byte : Number of dimensions in the array
Word : Number of entries for dimension # 1
Word : Number of entries for dimension #2

Word : Number of entires for last dimension

The byte following the array descriptor is the first byte of the
first array element.

213

Chapter 11

Library File Format
In order for BASIC to use a library file, its format must match
the following description.

Header Block

The library file header block starts with the first word of the
file. The format of a header block is:

Word : Revision number. This number is used by BASIC to deter­
mine if this library file is compatible with the current
version of BASIC. Library files adhering to the definition
defined here must contain a 0 in the high byte of this
word and a 1 in the low byte.

Word : Memory requirements. If this word contains a non-zero
value, it is interpreted as the number of bytes of reserved
memory allocated for this library. This memory is allo­
cated using the OS "get workspace" facility. The segment
identifier is passed to all routines on the stack and the
value passed to each routine on the stack will be - 1.

Word: Initialization routine address. This address is the offset
within the library file where control is passed when the
library file is opened. This routine may perform any ini­
tialization that is needed. When the initialization routine
gains control, DS:DX will point to the following structure:

214

Byte : BASIC type. This is one of the following:
1 - for Handheld BASIC
2-for GW-BASIC
3 - for BASIC in C (no windows)
4 - for Windows-BASIC

Byte: BASIC version. Fbr example, 1 in version 1.02.

Byte: BASIC revision. For example, 2 in version 1.02.

Byte : Math pack that is being used. This will be 0 for
the decimal math pack or 1 for the binary math
pack. (Handheld BASIC uses the decimal math
pack.)

Technicql Informatwn About Library Fil.es

This structure lets the library initialization routine determine if
it is compatible with the BASIC that is attempting to use it. If
the initialization code determines that it can not be used by this
BASIC, it sets the carry flag, sets the value of AL to an appro­
priate error code and returns to BASIC. The contents of this
structure must not be modified.

Word : Termination routine address. This address is an offset
within the library file where control is passed when the
library file is closed. This routine may perform any termi­
nation and cleanup operations needed.

Word : Suspend routine address. This address is the offset to the
routine which is called whenever BASIC suspends itself
due to a QUIT command or the quit/run-previous keys
being typed. It is the responsibility of this routine to save
the current state of the library so that it may be restored
when BASIC is restarted. Some examples of things that
should be saved are:

1. Since all files are closed on a suspend, information
needed to re-open files must be saved.

2. If the library is manipulating any devices, the state of
the device must be saved.

Word : Restart routine address. This routine is called when
BASIC is restarted after a suspend.

Note: If the address of any of the above routines is zero,
no call is made.

Routine Dispatch Table

This table must immediately follow the header block. It contains
a list of pointers to routine name blocks. It is REQUIRED that
the routine names are sorted in descending ASCII sequence.
Thus the first pointer in the table must point to the lowest
sorted routine name and the last entry point to the highest
sorted name. The format of this table is:

Word : The number of routines in the dispatch table (n).

n Words: Pointers to the routine name blocks.

215

Chapter 11

Routine Name Blocks
These variable size blocks are used to link the name of the rou­
tine with the offset of the start of the routine. Each routine in
the library must have a name dispatch block in order for BASIC
to find it. The format of a name dispatch block is:

Wo;rd: Routine dispatch address. This is the offset within this li­
brary file of the start of the routine.

Byte : Number of bytes in the routine name (n)

n Bytes: Routine name. The name must be stored as a string of
bytes in UPPER CASE characters.

Routine Code
The rest of the library file contains the code for all the routines
in the library. Word 0 of each routine name block must point to
the first instruction of the appropriate routine.

216

Chapter 12

BASIC ERROR CODES AND MESSAGES

Number Code Message

1 NF NEXT without FOR

BASIC executed a NEXT statement without
previously executing a FOR statement, or a
variable in a NEXT statement does not cor-
respond to a previously executed FOR state-
ment.

2 SN Syntax error

BASIC encountered a line that contains an
incorrect sequence of characters (such as
unmatched parentheses, misspelled state-
ment, incorrect punctuation, etc.).

3 RG RETURN without GOSUB

BASIC executed a RETURN statement
without previously executing a GOSUB
statement.

4 OD Out of DATA

When executing a READ statement, BASIC
could not find any DATA statements or
unread data items.

217

Chapter 12

Number Code Message

5 FC Illegal function call

A parameter that is out of range wa!
passed to a math or string function. ThiE
error may also occur as the result of:

• negative array subscript or an unrea•
sonably large array subscript.

• negative or zero argument with LOG .

• negative argument to SQR .

• negative mantissa with a noninteger
exponent.

• invalid exponential number .

• improper argument to MID$, LEFT$,
RIGHT$, TAB, SPC, SPACE$, STR$, or
LEFT$, RIGHT$, TAB, SPC, STR$ or
ON ... GOTO.

• negative record number used with GET
or PUT.

6 ov Overflow

The result of a calculation was too large to
be represented in BASIC numeric format. If
underflow occurs, the result is zero, and
execution continues without an error.

7 OM Out of memory

A program is too large, has too many FOR
loops or GOSUBs, has too many variables,
or has expressions that are too complicated.

8 UL Undeimed line number

A nonexistent line was referenced in a
GOTO, GOSUB, or IF ... THEN ... ELSE
statement.

9 BS Subscript out of range

An array element is referenced with a sub-
script outside the dimensions of the array or
with the wrong number of subscripts.

218

BASIC Error Codes and Messages

Number Code Message

10 DD Redimensioned Array/Duplicate
Definition

BASIC encountered 2 DIM statements for
the same array, or a DIM statement after
the default dimension of 10 had already
been established for that array.

11 /0 Division by zero

An expression includes division by zero, or
the operation of involution results in zero
being raised to a negative power. BASIC
supplies machine infinity with the sign of
the numerator as the result of the division,
or it supplies positive machine infinity
as the result of the involution.

12 ID Illegal direct

A statement that is illegal as a command
was entered at BASIC's prompt.

13 TM Type mismatch

A string variable name was assigned a
numeric value or vice versa. A string func-
tion was given a numeric argument or vice
versa.

14 OS Out of string space

The amount of memory used by string vari-
ables exceeded the amount of free memory.

15 LS String too long

An attempt was made to create a string
more than 255 characters.

16 ST String formula too complex

A string expression is too long or too com-
plex. The expression should be broken into
smaller expressions.

219

Chapter 12

Number Code Message

17

18

19

20

21

22

23

24

25

26

220

CN

UE

NR

RW

UE

MO

BO

DT

DF

FN

Can't continue

An attempt was made to continue a pro­
gram that:

• halted because of an error.

• was modified during a break in
execution.

• does not exist.

Undefined error.

No RESUME

BASIC executed an error-handling routine
that did not have a RESUME statement.

RESUME without error

BASIC executed a RESUME statement
when no error had occurred.

Undefined error

Missing operand

BASIC encountered an expression that con­
tained an operator but no operand.

Line buffer overflow

The line being input is too long.

Device Timeout

BASIC did not receive information from an
1/0 device within a predetermined amount
of time.

Device Fault

An incorrect device designation has been
entered.

FOR without NEXT

BASIC executed a FOR statement that did
not have a matching NEXT.

BASIC Error Codes and Messages

Sumber Code Message

!7 OP Printer Error

~ UE Undefined Error

a9 UE Undefined Error

30 UE Undefined Error

Disk Errors
Number Code Message

50 FO FIELD overtlow

A FIELD statement is allocating more
bytes than the specified record length of the
direct access file.

i>l IE Internal error

An internal malfunction has occurred in
BASIC. Report to Radio Shack the condi-
tions under which the message appeared.

52 BN Bad file number

BASIC encountered a reference to a buffer
number that is not open or is out of the
range of the number of files specified when
BASIC was loaded.

53 FF File not found

A LOAD, KILL, or OPEN statement refer-
ences a file that does not exist on the cur-
rent disk.

54 BM Bad file mode

An attempt was made to use PUT, GET, or
LOF with a sequential file, to LOAD a
direct file.

55 AO File already open

BASIC encountered an OPEN statement for
sequential output, or a KILL statement, for
a file that is already open.

221

Chapter 12

Number Code Message

57 IO Device 1/0 Error

An Input/Output error occurred. This is 1

fatal error; the operating system canno
recover it.

58 FE File already exists

The filename specified in a NAME state
ment is identical to a filespec already in US4

on the disk.

61 DF Disk full

All disk storage space is in use.

62 EF Input past end

BASIC executed an INPUT statement afte1
all the data in the file had been read, 01

BASIC executed an INPUT statement to a
null (empty) file. To avoid this error, use thE
EOF function to detect the end-of-file.

63 RN Bad record number

In a GET or PUT statement, the record
number is either greater than the maxi-
mum allowed (16,777,215) or equal to zero.

64 NM Bad file name

An illegal filename was used with a LOAD,
SAVE, KILL, or OPEN statement (for exam-
pie, a filename with too many characters).

66 DS Direct statement in file

Information in a non-ASCII format was
encountered while LOADing an ASCII-for-
mat file. The LOAD is terminated.

67 FL Too many files

The diskette already contains the maximum
number of files allowed. This usually occurs
on SAVE or OPEN. An attempt was made
to create a new file (using SAVE or OPEN)
when all directory entries are full.

222

BASIC Error Codes and Messages

Number Code Message

68 DU Device Unavailable

An attempt was made to open a file to a
nonexistent device. It may be that hardware
does not exist to support the device, such as
LPT2: or LPT3:, or that the device is dis-
abled.

69 UE Undef"med Error

73 AF Advanced Feature

75 FA File Access Error

77 UE Undefined Error

89 BL Bad Library Format

90 UR Undefined Library Routine

91 LF Illegal DBMS Call

92 IC Illegal Argument Count

93 IT Illegal Argument Type

94 IV Illegal Argument Value

223

Chapter 12

DBCALLS.LIB ERRORS
(via DBERRORS (x))

(O/S Specific Errors - Errors not related specifically to the O/f
Data Base support)

Number Message

2 File Not Found

4 Too Many Open Files

5 File Access Denied

6 Invalid File Handle

8 Out of Memory

9 Invalid Memory Block

11 Bad File Format

12 Invalid Access Request

18 No More Files

20 File Too Big

21 Internal File System Error

22 Bad File Name

24 General 1/0 Error

26 File Checksum Error

28 Invalid Time

29 Invalid Date

224

BASIC Error Codes and Messages

(Error Codes From Database 0/S Calls. 0/S errors specific to the
Database 0/S calls)

Number Message

64 Record Already Opened

65 No Opened Record

66 Record Not Found

67 Field Not Found

68 Too Many Fields

69 No Fields Defined

70 Uninitialized Data

71 Bad Field Data Size

72 Field Already Exists

73 Bad Sort Key Specified

74 Query Buffer Overflow Error

75 Bad Field Type Specified

76 Too Many Records

77 Record Too Big

225

Appendix A

ASCII CHARACTER CODES

The table in this appendix lists the characters generated by AS­
CII codes. (Note: All ASCII codes in this table are expressed in
decimal form.)

You can display the characters listed by using the BASIC state­
ment PRINT CHR$(code), where code is the ASCII code.

For Codes 0-31, the table also lists the standard interpretations.
The interpretations are usually used for control functions.

Note: The BASIC program editor has its own special
interpretation of some codes and may not display the
character listed.

227

Appendix A

ASCII CHARACTER CODES

ASCII Control
Code Cllaracter Cllaracter

000 (null) NUL
001 @) SOH
002 • STX
003 • ETX
004 • EQT
005 • ENO
006 • ACK
007 •
008 D BS
009 (tab) HT
010 (line feed) LF
011 b
012 (home) VT
013 (carriage return) CR
014 -~ so
015 P.- SI
016 • OLE
017 • DC1
018 DC2
019 !! DC3
020 , DC4
021 § NAK
022 - SYN
023 J_ ETB
024 t CAN
025 i EM
026 - SUB
027 - ESC
028 L FS
029 tt GS
030 A RS
031 ' us

228

ASCII Character Codes

ASCII CHARACTER CODES

ASCII ASCII
Code Character Code Character

032 (space) 068 D

033 I 069 E
034 070 F

035 # 071 G

036 $ 072 H
037 % 073 I

038 & 074 J
039 075 K
040 076 L
041 077 M

042 078 N
043 + 079 0
044 080 p

045 081 Q

046 082 R
047 I 083 s
048 0 084 T

049 1 085 u
050 2 086 V

051 3 087 w
052 4 OBS X

053 5 089 y

054 6 090 z
055 7 091 I
056 8 092 \
057 9 093 l
058 094 I\

059 095
060 < 096
061 = 097 a

062 > 098 b

063 ? 099 C

064 @ 100 d

065 A 101 e

066 8 102 f

067 C 103 g

229

Appendix A

ASCII CHARACTER CODES

ASCII ASCII
Cede Character Code Character

104 h 140 ' 105 141
106 142 A
107 k 143 It
108 144 E
109 rn 145 ii
110 n 146 IE
111 0 147 0

112 p 148 0
113 q 149 0
114 150 u
115 s 151 u
116 152 ..

y
117 u 153 0
118 V 154 u
119 w 155 ¢

120 X 156 £
121 y 157 l
122 z 158 Pt
123 159 f
124 160 a
125 161
126 162 6
127 SPACE 163 u
128 C 164 n
129 u 165 N
130 e 166 ~
131 a 167 Q
132 a 168 l
133 a 169 r-

134 • 170 --, a
135 c; 171 ½

136 A 172 ¼ e
137 e 173
138 e 174 ((

139 175
))

I

230

ASCII Character Codes

ASCII CHARACTER CODES

ASCII ASCII
Code Character Code Character

176 t 212 I=

177 ~ 213 F

178 I 214 rr

179 I 215 * 180 -j 216 ,I=
181 =! 217 _J

182 --ll 218 r
183 -,, 219 • 184 =! 220 -185 =ll 221 I
186 II 222 I
187 :::;i 223 -188 =!J 224 a

189 _jJ 225 (J

190 .., 226 r
191 -, 227 71

192 L. 228 I

193 ...J.. 229 0

194 T 230
"' 195 I- 231 T

196 232 ¢

197 + 233 0

198 I= 234 n
199 I~ 235 d

200 I.\, 236 00

201 Ir 237 0
202 ~ 238 (

203 'i? 239 n
204 lie 240 -
205 - 241 ±
206 .JL 242 ?. -ir

207 ='= 243 .!.
208 ..IL 244 r
209 =;= 245 J
210- 246
211 IL 247 :::::

231

Appendix A

ASCII CHARACTER CODES

ASCII ASCII
Cede Character Code Character

248 0 252 '1
249 + 253 2

250 + 254 •
251 v 255 (blank 'FF')

232

ABS Fn 64, 67
Absolute value 67
Addition 25
AND27
Arctangent 69

INDEX

Argument length byte 210
Argument type byte 210-11
Argument values

format 210
on stack 210-11

Arguments 4
Arithmetic operators 24-25
Array descriptor 213
Arrays 31-35, 51-52, 211

data query 52
defining 35
internal data format 213
setting dimensions 35, 91
types 34

ASC Fn 64, 68
ASCII codes 68, 7 4, 227-32
Assembly language subroutines 207-11

CALL 61, 72, 207-08
calling 72, 207-08
rules 209-10

ATN Fn 64, 69

BASIC
commands 13, 45-57
concepts 17-29
device names 5-6
editing 13-16, 92
entering 9
error codes and messages 217-23
exiting 11, 197
line numbers 17
program 9-11, 17
returning errors 212
special function keys 16
statement 1 7

BEEP St 61, 70
Boolean operators 27-28

233

Index

Branching 108,109, 111-12, 150,151,152,153,156
BREAK St 61, 71
Buffer 4
Buffer, printer 140

CALL St 46-55, 61, 72, 207-08
Calling conventions 208-10
Calling subroutines 72, 207-08
CDBL 64, 73
CHR$ Fn 64, 7 4
CINT Fn 64, 75
CLOSE St 38, 61, 77
Clear

memory 76
screen 78
variables 76, 148

CLEAR St 61, 76
Closing files 38, 76, 77, 148, 180
Closing libraries 148
CLS St 61, 78
COLOR St 61, 79
Commands 13, 45-57
Comments 17
Compressed files 189
Concatenation 25
Concepts, BASIC 17-29
Constants

classifying 20-21
declaring 21-22

CONT St 61, 80
Converting precision 23, 73, 75, 82
Converting strings 84, 146, 196, 204
Coordinates 161
COS Fn 64, 81
Cosine 81
CSNG Fn 64, 82
CSRLIN Fn 64, 83
Cursor 83, 137, 162, 198
CVD Fn 64, 84
CVI Fn 64, 84
CVSFn 64, 84

Data 18-20
constants 20-21

234

converting 23, 73, 75, 82, 84, 146
double precision 19, 22, 73, 84, 89, 146
hexadecimal 19, 110
integers 18, 75, 84, 89, 103, 119, 146
internal data formats 212-13
manipulating 23
numeric 18
octal 19-20, 149
printing 141, 163-68
querying 52-54
single precision 19, 21, 22, 82, 84, 89, 146
strings 18, 23, 89, 125, 126, 145, 185

DATA St 61, 85-86
Database

calls 45-57
closing 46
creating 46
data querying 52-54
date fields 51-52
deleting 46
error handling 4 7
manipulating fields 48-52
manipulating records 4 7-48
opening 46
sample program 55-57
sorting 54-55

Database-oriented calls 46-4 7
Date, retrieving 87
Date, setting 87
Date fields, database 51-52
DATE$ Fn 64, 87-88
DBCALLS.LIB 45

accessing 45
database-oriented calls 46-4 7
field-oriented calls 48-54
machine language subroutines 45-57
record-oriented calls 4 7-48
sample database program 55-57
sorting 54-55

Debugging 80, 195, 203
DEFDBL St 23, 61, 89
DEF FN St 61, 90
DEFINT St 23, 61, 89
DEFSNG St 23, 61, 89

Index

235

Index

DEFSTR St 23, 61, 89
Deleting

files 124
programs 148

Device names 5-6
Devices 5-6, 159-60
DIM St 35, 61, 91
Direct access files 40-43

accessing 42-43
closing 76, 77, 148, 180
creating 41-42
deleting 124
EOF94
FIELD 99-101
KILL 124
LOC 136
locating records 136
LSET 142
MKD$146
MKI$ 146
MKS$146
OPEN 159-60
RSET 187

Division 24
integer 25

Double precision 19, 22, 23
CDBL 73
CVD84
DEFDBL 89
internal storage format 213
MKD$146

Edit control characters 14-16
EDIT St 61, 92
Editing 13-16, 92
END St 61, 93
End of file 94
EOF Fn 64, 94
Equal sign 25
EQV27
ERL St 61, 95
ERR St 61, 96
ERROR St 61, 97
Error codes 217-25

236

~rror messages 217-25
~rrors

CALL DBERROR 47
DBCALLS.LIB 224-25
disk 221-23
ERL95
ERR96
ERROR 97
ON ERROR GOTO 151
RESUME 183
returning 212
simulate 97
trapping 47, 97, 151, 183

EXP Fn 64,98
Exponent, natural 98
Exponential numbers 22
Exponentiation 24
Expressions 23
Extensions 5

FIELD St 61, 99-101
Field-oriented calls 48-54
Filenames 5
Files

buffer 4
closing 38, 46, 76, 77, 148, 180
converting data 84
creating 37-39, 41-42, 46
deleting 46, 124
direct access 40-43

accessing 42-43
closing 76, 77, 148, 180
creating 41-42
deleting 124
EOF94
FIELD 99-101
KILL 124
LOC 136
locating records 136
LSET 142
MKD$146
MKI$ 146
MKS$146
OPEN 159-60

Index

237

Index

RSET 187
displaying 102
end of file 94
FIELD 99-101
GET 107
KILL 124
length 138
library 207-16

format 214-16
header block 214
routine dispatch table 215
routine name blocks 216
routine code 216

LOAD 135
LOC 136
LOF 138
MERGE 143
naming files 5, 46
OPEN 159-60
opening 46, 159-60
PUT 172
renaming 14 7
sequential access files 37-40

closing 38, 76, 77, 148, 180
creating 37-39
deleting 124
end of file 94
EOF94
INPUT# 116-17
INPUT$ 118-19
LINE INPUT# 39
LOC 136
locating records 136
OPEN 159-60
opening 159-60
PRINT# 169-70
updating 39-40
WRITE# 206
writing 169-70

updating 39-40
WRITE# 206

FILES St 61, 102
FIX Fn 64, 103
Formatting output 140, 165-68, 193, 198

238

FOR/NEXT St 61, 104-05
FRE Fn 64, 106
Function keys 16, 120-23

assigning 120
displaying 120-21
special 16
trapping 122-23

Functions 29, 64-65
Function, user 90

GET St 61, 107
GOSUB St 61, 108
GOTO St 61, 109
Graphics 129-30, 171
Greater than sign 25
Greater than/equal to sign 26

Header block 214
HEX$ Fn 64, 110
Hexadecimal 19, 110
Hierarchy of operators 2_8-29

IF/THEN/ELSE St 61, 111-12
IMP28
Inequality sign 25
INKEY$ Fn 64, 113
INPUT St 61, 114-15
INPUT# St 62, 116-17
INPUT$ St 63, 118-19
Input

device 116-17
disk 107, 116-17, 118, 132
keyboard 113, 114-15, 118-19, 131

INT Fn 64, 119
Integer division 25
Integers 18, 22, 23

CINT 75
CVI 85
DEFINT 89
FIX 103
INT 119
internal storage format 212
MKI$146

Index

239

Index

Internal data formats 212-13
array 213
integer 212
single precision floating 212-13
double precision floating 213
string 213

KEY St 62, 120-21
Keyboard input 113, 114-15, 118-19, 131
Keys 14-16, 120-23
KEY /Trap St 62, 122-23
Key trapping 122-23, 154-55
Keywords 59-60
KILL St 62, 124

LEFT$ Fn 64, 125
LEN Fn 64, 126
Less than sign 25
Less than/equal to sign 25
LET St 62, 127
LIBRARY St 45, 62, 128, 207
Library files 207-16

format 214-16
header block 214
routine dispatch table 215
routine name blocks 216
routine code 216
DBCALLS.LIB 45-57

LINE/Graphics St 62, 129-30
LINE INPUT St 62, 131
LINE INPUT# St 62, 132
Line length 13
Line numbers 17, 178-79
LIST St 62, 133
listing programs 133, 134
LLIST St 62, 134
LOAD St 62, 135
Loading

BASIC 9
programs 8-9, 135

LOC Fn 64, 136
LOCATE St 62, 137
Locating cursor 83, 162
Locating record 136

240

LOF Fn 64, 138
LOG Fn 64, 139
Logarithms 139
Logical operators 27-28
Loops 104-05
LPOS Fn 64, 140
LPRINT St 62, 141
LSET St 62, 142

Machine language subroutines 45-57
Matching records, of database 52-54
Memory size 106
MERGE St 62,143
Merging programs 143
MID$ Fn 64, 145
MID$ St 62, 144
MKD$ Fn 65, 146
MK!$ Fn 65, 146
MKS$ Fn 65, 146
MOD25
Modulus arithmetic 25
Multiplication 24

NAME St 62, 147
Naming files 5, 46
Natural exponent 98
Natural logarithm 139
Negation 24
Nested loops 105
NEW St 62, 148
NOT27
Notations 3
Numbers

converting 23, 73, 75, 82, 146
double precision 19, 22, 73, 84, 89, 146, 213
hexadecimal 19, 110
integers 18, 75, 84, 103, 119, 146, 212
internal data formats 212-13
octal 19-20, 149
single precision 19, 21, 22, 82, 84, 89, 146, 212-13

Numeric constants 20-21
Numeric data 18-20
Numeric variables 21, 22-23

Index

241

Irukx

OCT$ Fn 65, 149
Octal 19-20, 149
ON BREAK GOSUB St 62, 150
ON ERROR GOTO St 62, 151
ON/GOSUB St 62, 152
ON/GOTO St 62, 153
ON KEYOGOSUB St 62, 154-55
ON RESTART St 62, 156
ON TIMEROGOSUB St 62, 157-58, 202
OPEN St 62, 159-60
Operators 23-29

arithmetic 24-25
functions 29
hierarchy 28-29
logical 27-28
relational 25-27
string 25
string relational 26-27

OR27
Output

display 133, 163-64, 165-68, 171, 205
formatting 140, 165-68, 193, 198'
printer 134, 141
sound 70
to file 169-70, 172, 206

Parameters 4
Physical coordinates 161
POINT Fn 65, 161
POS Fn 65, 162
Position cursor 137, 198
Precision conversion 23, 73, 75, 82
PRESET St 63, 171
PRINT St 63, 163-64
PRINT# 63, 169-70
Print buffer 140
Printer 134, 140, 141
Printing, formatted 141, 163-68
PRINT USING St 63, 165-68
PRINT# USING St 63, 169-70
Program 9-11, 17

242

deleting 124, 148
editing 13-16, 92
elements 17

line numbers 17, 178-79
lines 13, 178-79
listing 133, 134
loading 8-9, 135
loops 104-05
merging 143
renumbering 178-79
sample database 55-57
saving 10, 189
termination 93, 195, 197
typing 9-10

PSET/Graphics St 63, 171
PUT St 63, 172

Query, data 52-54
QUIT St 63, 173

Random files
reading records 107
sending records 172

RANDOMIZE St 63,174
Random numbers 174, 186
READ St 63, 175-76
Record-oriented calls 4 7-48
Records 37

matching 52-54
Relational operators 24, 25-27

with strings 26-27
REM St 63, 177
Remarks 15, 177
Removing files 124
Removing programs 148
Renaming files 14 7
RENUM St 63, 178-79
Renumbering programs 178-79
RESET St 63, 180
RESTART St 63, 181
Restart trapping 156, 181
RESTORE St 63,182
RESUME St 63, 183
Retrieving date 87
Retrieving time 200-201
RETURN St 63, 184
Returning errors 212

Index

243

Index

Reverse video mode 79
RIGHT$ Fn 65, 185
Routine dispatch table 215
Routine code 216
Routine name blocks 216
RSET St 63, 187
RUN St 8, 63, 188

Sample database program 55-57
SAVE ST 63, 189
Saving programs 10, 189
Screen, clear 78
Sequential access files 37-40

closing 38, 76, 77, 148, 180
creating 37-39
deleting 124
end of file 94
EOF94
INPUT# 116-17
INPUT$ 118-19
inputting 116-17, 118-19
KILL 124
LINE INPUT# 132
LOC 136
locating records 136
OPEN 159-60
opening 159-60
PRINT# 169-70
updating 39-40
WRITE# 206
writing 169-70

Setting date 87
Setting time 200
SON Fn 65, 190
Sign, of a number 190
SIN Fn 65, 191
Sine 191
Single precision 19, 21, 22

CSNG 82
CVS84
DEFSNG89
internal storage format 212-13
MKS$146

SOUND St 63, 192

244

Sorting 54-55
SPC Fn 65, 193
Speakers 70, 192
Special function keys 16
SQR Fn 65, 194
Square root 194
Stack 208-11

argument values 210-11
Statements 17, 61-63
STOP St 63, 195
STR$ Fn 65, 196
String constants 20-21
Strings 18, 20-21, 22, 23, 89, 125, 126, 145, 185

internal storage format 213
String operator 25
String variables 21, 22
Subroutines 72, 108, 152, 184

assembly language 207-11
machine language 45-57

Subtraction 25
Syntax 4
SYSTEM St 63,197

TAB Fn 65, 198
TAN Fn 65, 199
Tangent 199
Termination, of program 93, 195, 197
Terms 4
Time 200-201

retrieving 200-01
setting 200
trapping 157-58

TIME$ Fn 65, 200-01
TIMER/Trap St 63, 202
Trace 148, 203
Trapping

errors 47, 97, 151, 183
keys 122-23, 154-55
restart 156, 181
timer 157-58, 202

TROFF St 63,203
TRON St 63,203
Typing programs 9-10

Index

245

Index

Unary minus 24

VAL Fn 65, 204
Variables 21-22, 76

classifying 21
clearing 76, 148
declaring 21-23
numeric 21, 22-23
string 21

Video, clear 78

WRITE St 63,205
WRITE# St 63,206

XOR27

246

4/ 87 TM

RADIO SHACK
A Division of Tandy Corporation

Fort Worth, Texas 76102

874 -9960 Printed in U.SA

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256

